Skagit Climate Science Consortium’s

Skagit Climate Workshop

September 29, 2011
WSU, Mt Vernon



Workshop Objectives

Introduce ourselves to Skagit decision-makers.

Establish an ongoing dialogue.

Share information.

We hope that your expertise as local decision-makers will

help us shape our effort and our research is of use to you
and others.



Today’s Agenda

Welcome and Background Information (9-9:45)

Climate Matters (9:45-11:30) - Dr. Alan Hamlet
Lunch (11:30-12:15)

Skaglt Specific Climate Science Findings (12:30-3:50)

" Glaciers - Dr. Jon Riedel
* Hydrology - Dr. Alan Hamlet
" Sediment - Dr. Eric Grossman
= Sea Level Rise/Storm Surges - Mr. Roger Fuller
" |ntegrated Impacts Discussion - Dr. Alan Hamlet

Closing & Next Steps (3:50-4:00) - Carol Macllroy & Dr. Alan Hamlet



Strategy for the Afternoon Sessions

e Short introductory talks from scientists on each of the four
topics (about 10 minutes)

* Subsequent questions and discussion will direct us to more
detailed information, or to other related topics not
covered.
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The “Full Monty”



Skagit Climate Science Consortium

History and Background




SC2 Goals

Collaborative, interdisciplinary research

Source of scientific information/support

ldentify and fill research needs

Establish/maintain local relations

NIPS

Create and maintain a web-basec
house
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John Rybczyk Christian Torgersen Correigh Greene



Today

What concerns/questions do you have?

How does what you hear affect your
responsibilities — short and long-term?

W
W
W

nat are your highest priorities?
nere do you need more information?

nat level of detail is useful?

What next steps/follow actions do you want?



Headwaters: Cascades

Global Climate
Change Scenarios

Glacier o Vegetation
Monitoring e ke and Forest
Sediment Change
Model
Z
Ecasystem Sediment <
_: Ll Groundwater Monitaring m
o Model [
= T Q
e S
QJ Water Human =
v Management Reservoir Energy f&
W Rules Model D D
- =
ﬂ Hydmdynamic Model ﬁ
3 River and Estuary Sediment Populaticn and o)
Bathymetry and Model Land Use m
: Land Elevation
¥ Biochemical g
g Madel -
Ecosystem ! \ t
Moanitoring Aquaticand Intertidal

EcosystemModels

Water Quantity
and Guality
Monitoring

Sediment
Manitoring

Estuary: Puget Sound







Climate Overview and Projections for the
Pacific Northwest and Skagit River Basin

Dr. Alan F. Hamlet

Skagit Climate Science Consortium
Climate Impacts Group

Dept. of Civil and Environmental
Engineering, University of Washington
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Terminology and
Concepts



Weather:

A “snapshot” of the state of the atmosphere and other related
physical variables in a particular place. E.g. the current state of
cloud cover, solar radiation, precipitation, temperature,
humidity, wind speed and direction, etc.

Time scale: seconds to weeks

Climate:

The long-term statistics of weather. E.g. the long-term average
temperature for May over the most recent 30-year period in the
Pacific Northwest is a statistic of our current regional climate.

Time scale: years to centuries



Climate Variability:

Global, regional, and local climate vary from year-to-year,
decade-to-decade, and century-to-century. Some aspects of
natural climate variability are associated with random variations
(e.g. annual average temperature variations from year-to-year),
others are believed to be cyclical in nature (e.g. ice ages)

Climate Change:

Climate change refers to systematic changes in the global,
regional, or local climate that are directly caused by increasing
greenhouse gas concentrations of human origin. Other names

include: “Global Warming”, “Anthropogenic Climate Change”,
“Global Climate Disruption”



Sources of Natural Climate Variability in the Pacific
Northwest

Pacific Decadal Oscillation El Nino Southern Oscillation
A history of the PDO A history of ENSO
T warm warm T

cool
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Global Climate Models and Simulations of
Historical Climate



Major Processes Effecting the Global Climate System

Incoming Outgoing
solar energy heat energy

Transition
from solid Cirrus

to vapor\ —_ clouds
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Copyright © 2005 Pearson Education, Inc., publishing as Benjamin Cummings




GCMs are Computer Models of the Global Climate System

Physical Processes in a Model

solar  terrestrial
radiation radiation
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Climate models are systems of differential equations based on the basic laws of physics, fluid motion, and
chemistry. To "run" a model, scientists divide the planet into a 3-dimensional grid, apply the basic equations,
and evaluate the results. Atmospheric models calculate winds, heat transfer, radiation, relative humidity, and
surface hydrology within each grid and evaluate interactions with neighboring points.

http://celebrating200years.noaa.gov/breakthroughs/climate _model/

modeling_schematic.html
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Global Mean Surface Temperature Anomalies

100 Anthropogenic and Natural Forcm gs '

observations

1) Global climate
modeling experiments
reproduce history of
global temperatures
remarkably well.

Temperature anomaly (° C)
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2) Natural forcings
(e.g. volcanic eruptions
and variations in solar
radiation) alone cannot
explain the rapid rise in
temperature at the end
of the 20t century.
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Projections of Future Climate



Summary of the IPCC Emissions Scenarios

(a) CO, emissions (b) CO, concentrations
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Temperature Increases Associated with Greenhouse

Gas Emissions Scenarios

Warming will increase if GHGs increase. |f GHGs were kept fixed at current
levels, a committed 0.6°C of further warming would be expected by 2100.
More warming would accompany more emission.
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Consensus Forecasts of Temperature and Precipitation
Changes from IPCC AR4 GCMs

Temp Response (°C)
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Downscaling
Relates the “Large” to the “Small”

Global Climate Model Air Temperature

~200 km
(~125 mi)
resolution

resolution



215t Century Climate Impacts for the Pacific Northwest Region
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Mote, PW. and E. P. Salathe Jr., 2010: Future climate in the Pacific Northwest, Climatic Change,
DOI: 10.1007/s10584-010-9848-z



Projected Seasonal Precipitation Changes for the Pacific Northwest
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Figure 10. As in Figure 9, but for
precipitation. The height of the bars
indicates actual water precipitation
but the percentages are calculated
with respect to a reference value
for that season, so that -11% in JJA
is much less than -11% in DJF. The
reference values for the extremes are
that model’s 20th century mean for
that season (or annual mean), and for
the REA average the reference is the
all-model 20th century value. Unlike
for temperature, for any season
some models project increases and
some project decreases, though the
vast majority project decreases for
summer and increases for winter by
the 2080s

Mote, PW. and E. P. Salathe Jr., 2010: Future climate in the Pacific Northwest, Climatic Change,

DOI: 10.1007‘510584—010—9848—2



Projected Temperature in the Skagit Basin
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Summaries of the 20™ and 215 century annual and seasonal mean
temperatures (in °F) for the A1B and B1 scenarios for the entire
Skagit River basin upstream of Mount Vernon. (DJF=winter,
MAM=spring, JJA=summer, and SON=fall)




Projected Precipitation in the Skagit Basin
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Summaries of 20" and 215t century annual and seasonal precipitation
(in inches) for A1B and B1 scenarios for the entire Skagit River basin

upstream of Mount Vernon. (DJF=winter, MAM=spring, JJA=summer,
and SON=fall).
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The Skagit Climate Science Consortium

A Dialogue and A Resource




Glaciers and Climate Change In Skagit Basin

Jon L. Riedel, Ph.D., L.G.
Geologist — North Cascades National Park

http://www.nps.gov/noca/naturescience/glacial-mass-balancel.htm







BRITISH COLUMBIA
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Silver Glacier, North Cascades National Park

1958 (Post) 2006 (Scurlock)




Loss of glacial area in the past century:

.

Sty
o

-North Cascades NP ~50% ~1900-1998 (Granshaw, 2002)
-Olympic NP 60% ~1900-2009 (Riedel et al., 2010)
-Mount Rainier NP 21% 1913-1998 (Nylen, 1998)
-Garibaldi PP 44% ~1900-2005 (Koch, 2006)




The Skagit’s glaciers provide
| 120-180 billion gallons of fresh
| water to our rivers and lakes every
| summer - when we need it most.
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Cumulative Net Balance of NOCA Glaciers
Adjusted According to Map Comparison
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Thunder Creek Summer Streamflow
 Has declined 31% since 1900

* Would decline an additional 25% if
glaciers melt away completely
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Glaciers and Climate Change In Skagit Basin

Jon L. Riedel, Ph.D., L.G.
Geologist — North Cascades National Park

http://www.nps.gov/noca/naturescience/glacial-mass-balancel.htm




Glacial Area Change within North Cascades National Park Complex,
1900-1998

1. Post et al. (1971)
2. Granshaw (2002)
3. National Park Service (unpublished)
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Observed mean summer glacial melt curves (7-9 °c) and extrapolated curves for future
warming scenarios (10-14 °c)
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Effects of Projected Climate Change on the Hydrology of the
Skagit River Basin

CLIMATE

Dr. Alan F. Hamlet W‘
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Projected Temperature in the Skagit Basin

O Historical 02020s @2040s m2080s

Temperature (°F)

Summaries of the 20™ and 215t century annual and seasonal mean
temperatures (in °F) for the A1B and B1 scenarios for the entire
Skagit River basin upstream of Mount Vernon. (DJF=winter,
MAM=spring, JJA=summer, and SON=fall)




Projected Precipitation in the Skagit Basin
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Summaries of 20™ and 21t century annual and seasonal precipitation
(in inches) for A1B and B1 scenarios for the entire Skagit River basin

upstream of Mount Vernon. (DJF=winter, MAM=spring, JJA=summer,
and SON=fall).




Hydrologic Projections



Schematic of VIC Hydrologic
Model and Energy Balance Snow  Hydrology models translate climate
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CLIMATE
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Hydrologic Climate Change Scenarios
for the Pacific Northwest Columbia
River Basin and Coastal Drainages

Climate change is projected to have substantial impacts on Pacific Northwest water
resources and ecosystems. Recognizing this, resource managers have expressed
growing interest in incorporating climate change information into long-range planning.
The availability of hydrologic scenarios to support climate change adaptation and
long-range planning, however, has been limited until very recently to a relatively small
number of selected case studies. More comprehensive resources needed to support
regional planning have been lacking. Furthermore, ecosystem studies at the landscape
scale need consistent climate change information and databases over large
geographic areas. Products using a common set of methods that would support such
studies have not been readily available.

To address these needs, the Climate Impacts Group worked with several prominent

water management agencies in the Pacific Northwest to develop hydrologic climate

change scenarios for approximately 300 streamflow locations in the Columbia River

basin and selected coastal drainages west of the Cascades. Study partners are listed

below. The scenarios, provided to the public for free via this website, allow planners to
onsider how hydrologic changes may affect water resources management objectives
nd ecosystems.

ccess to the data and summary products is available from the menu to the left. The

ydrologic data produced by the study are based on climate change scenarios
produced for the IPCC Fourth Assessment effort. Information on the methods and
modeling tools used in the study is provided in the summary report. For new users of
the site, a quide to the website and the data resources contained within itis also

e Impacts Group was funded by the following research partners to develop
ia River Basin and coastal drainages climate change scenarios:

btate Department of Ecology

eville Power Administration
e Northwest Power and Conservation Council
e Oregon Department of Water Resources
e British Columbia Ministry of Environment

http://www.hydro.washington.edu/2860/




CLIMATE Watershed Classifications:

W \
§"//“ Transformation From Snow to Rain

IMPACTS
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Ratio of Peak SWE to
Oct. to March Precipitation
(73 <01 Rain dominant

@@ 0.1- 0.4 Transition
(3 >04 Snow dominant

Historical

Map: Rob Norheim




Skagit River Basin Projections
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Summary of Flooding Impacts

Rain Dominant Basins:
Possible increases in flooding due to increased precipitation
intensity, but no significant change from warming alone.

Mixed Rain and Snow Basins Along the Coast:
Strong increases due to warming and increased precipitation
intensity (both effects increase flood risk)

Inland Showmelt Dominant Basins:

Relatively small overall changes because effects of warming
(decreased risks) and increased precipitation intensity (increased
risks) are in the opposite directions.



2040s Changes in Flood Risk
Skagit River at Mount Vernon
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Changes in Low Flows

Ratio of Low Flow <055 © 085-0095
(7Q10) Statistics 0.55-0.65 O 0.95-1.05
(21st Century = 065-075 @ >1.05

20th Century) 0.75-0.85

Extreme 7-day low flow
values (7Q10) are
projected to
systematically decline in
western WA due to loss of
snowpack and projected
dryer summers

Mantua, N., I. Tohver, A.F. Hamlet, 2010: Climate change impacts on streamflow extremes and summertime stream temperature and their
possible consequences for freshwater salmon habitat in Washington State, Climatic Change, doi: 10.1007/s10584-010-9845-2




2040s Changes in Extreme 7-day Low Flow for the
Skagit River at Mount Vernon

2040s
Low Flow (cfs)
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Related Impacts



Municipal Water Supply

Judy Reservoir, Skagit PUD
http://skagitpud.org/index.php/resources/water_system/watershed/



Agriculture
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Floodplain Management
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Hydropower Production
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Aquatic Ecosystems

August Mean Surface Air Temperature
and Maximum Stream Temperature

Favorable for Sakmon Stressful for Salmon Fatal for Salmon

<=50 60 68 77

Mantua, N., I. Tohver, A.F. Hamlet, 2010: Climate change impacts on streamflow extremes and summertime stream
temperature and their possible consequences for freshwater salmon habitat in Washington State, Climatic Change,
online first, doi: 10.1007/s10584-010-9845-2




Forest Disturbance
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Littell, J.S., E.E. Oneil, D. McKenzie, J.A. Hicke, J.A. Lutz, R.A. Norheim, and M.M. Elsner.
2010. Forest ecosystems, disturbance, and climatic change in Washington State, USA.
Climatic Change 102(1-2): 129-158, doi: 10.1007/s10584-010-9858-x



Near Coastal Environment and Ecosystems
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Sediment Transport
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Transport, Fate and Impacts of Sediment
in the Skagit River-Delta Complex

Dr. Eric Grossman
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science for a changing world

a USGS Why? Cost of sediment impacts

North America: Fluvial sediment runoff causes $20-50B/yr
in damages (Osterkamp et al. 1998, 2004)
How will costs in Skagit County change in 2020, 2050, 21007

Puget Sound: Flood recurrence interval more frequent with urbanization
(Moscrip & Montgomery 1997)




a USGS

science for a changing world

Fluvial

124°

delivery to Puget Sound

122°

EXPLANATION
—--—Drainage-basin boundary
—--—Subbasin boundary

3.3 Annual sediment load,
in thousands of tons

Published load
estimates could not be
found or do not exist
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ZUSGS New Sedlment Load Methods

science for a char qmq world

Real- t|me Iower cost, greater certarnty
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a USGS Sediment Rating Curve

science for a changing world

Seasonality, Process-Based
(rainfall vs. snow-melt)
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Sk_agit Delta Historical Change

Sediment Budget

- — Repeat -16.8M m3
Seafloor Sand

Mapping 10-35x increase
Bypassing tide flats
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a2 USGS Skagit Delta Historical Change

science for a changing world — N N

Transformed tide flat from calm mud to energetic sand flat
Top

. W

cross-bedded
sand = energetic
active bed
migration

1850

Laminated
mud = calm
setting

Grossman et al. (2011) ERE
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diment Fate — Calm, deep sites

science for a changing world
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a2 USGS i _Extent of Impact in Skagit

science for a changing world

80-90% of sediment depositional area reduced;

Nearly entire sediment load focused to Skagit Bay.
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science for a changing world

a2 USGS | Sediment Budget
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recovery in deltas
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by 2020. W




2 USGS Lost Resource to Fir Island

science for a changing world BN~

~1 m subsidence on Fir Island, lost sediment, compaction

e,

L High risk (and cost)
~ 4 for sea-level rise, floods
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Sediment Science Needs

1. Flooding/Navigation:
Channel deposition — capacity
Phasing of sediment movement

2. Water Quality, Contaminants:
A) Turbidity - water quality
B) Transported by fines

3. Habitats/
Ecosystems:
A) Substrate type, transport
B) Thresholds, tolerances
C) Turbidity - photosynthesis

4. Coastal Erosion:
Mitigates sea-level rise

5. Hydropower:
A) Reservoir/turbine life span
B) Scour/gravel augmentation




KUSGS »y Conclusions

science for a changing world

I. Sediment impacts are costly high and affect human
livelihood in many ways, some only recently recognized.

IT. New information on sediment transport and fate can be
strategically used to forecast future impacts and help
planning/— we just need to know what you need.

III. Cumulative impacts to nearshore environments will
affect ecosystem restoration efforts, salmon recovery.

IV. An integrated sediment management plan linked to
county, shoreline, and coastal and marine spatial plans
will help alleviate future costs and conflicts and
promote community resilience by protecting food, water
and human livelihood.



Sea Level Rise and Coastal Storms
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Take Home Messages

Sea level varies over space and time

(and effects of a rise in sea level will likewise vary)

Current estimate for Skagit: 6 - 50” higher by 2100
Small changes can have big impacts

It’s Sea Level Rise + Storms that matter



Sea Level is Variable
(even without climate change)

Wind
Atmospheric pressure
Ocea n Ci rcu Iatio n Interannual variation since 1980

9447130 Seattle, Washington

Topography
Su bSidence a nd 03 _

uplift "
Plate tectonics
El Nino
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18” variability in annual Sea Level



Pressure (Mh)

Sea Level and Atmospheric Pressure

NOAR/NOS/CO-0PS
Barometric Pressure Plot
9447130 Seattle, Puget Sound, WA, WA
from 2009/12/31 - 2010/12/31
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Sea Level and Wind

Winter Sea Level is 20” higher

Average Seasonal Cycle
9447130 Seattle, Washington
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Sea Level and El Nino

~SM\No

date.
High resolution (Credit: Image produced by

Oceanography Distributed Active Archive

0
44

of NASA JPL.)

12” higher winter sea level
Bigger waves

El Nino events are growing
stronger



Meters

Sea Level Rise Varies Spatially

Seattle — sea level rise 1890 — 2010

9.5 inches

Mean Sea Level Trend
9447130 Seattle, Washington

Past Sea Level Rise
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0.82 mm/yr & \
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@ rPort Angeles
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® Port Townsend
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0.60 "
Data with the average seasonal Source: NOAA
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The mean sea level trend is 2.06 millimeters/year with a 95% confidence
interval of +/- 0.17 mm/yr based on monthly mean sea level data from
1898 to 2006 which is equivalent to a change of 0.68 feet in 100 years.
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Some areas are subsiding
Some are uplifting



Future Sea Level Rise

Puget Sound
d 2050 2100
o In inches
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Nashington, Washington Department of Ecology
MARK NOWLIN / THE SEATTLE TIMES Mote et al. 2008



Future Sea Level Rise

(recent research)
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Sea Level Rise and Coastal Flood Risk

It’s the big events you’ll notice, not the
slow change in sea level.

For much of Puget Sound...

e A one foot of sea level rise turns
a 100 year flood event into a 10
year event.

e Atwo foot sea level rise turns a
100 year flood event into an
annual event.

"":v‘*'jr:‘,m : \
Bay Dike Breach (4 February 2006)

Numbers and top photo courtesy of Hugh Shipman, Washington Dept. of Ecology



Sea Level Rise and Coastal Flood Risk
(Big events happen when multiple factors co-occur)

January 5, 2010

King Tide plus light breeze King Tide plus 44 knot wind
from the north from the south

Breached Dike



Swinomish Climate Change Initiative
Impact Assessment Technical Report

Reservation infrastructure
vulnerable to sea level rise
and storm surge

160 homes @ $S83 million
18 non-residential buildings
@ S19 million
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Sea Level Rise Risks

Increased risk of:

coastal flooding

drainage on farmland and
low-lying areas

coastal erosion

salt intrusion into coastal
aquifers and farmland

higher dike costs
transportation disruption

loss of nearshore habitat
bluff landsliding
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Certainty of Sea Level Science

* Sea level rise is one of the areas of greatest
certainty in climate science

* Science is changing rapidly (lots of research)

 Some areas of uncertainty, such as wind
changes and glacial dynamics, appear to be
happening more quickly than expected



Ecosystems, Habitats
and Ecosystem Services

ﬁ- -—

* Loss of tidal flats, tldal marshes and\beaches

\‘
e Restoration targets for Chinook recovery?

* Possible increase in eelgrass




Estuarine Impacts

no rise 18 inch rise 32 inch rise
In sea level in sea level In sea level
12% loss of marsh to sandflat (580 acres) 22% loss of marsh to sandflat (1080
16% gain--estuarine emergent marsh acres)
51% loss--estuarine shrub marsh 15% gain--estuarine emergent marsh
48% loss--riverine tidal shrub marsh - .= 76% loss--estuarine shrub marsh

o L
£ "%63% loss--riverine tidal shrub marsh

46% _Ioss--riverine tidal forest _
5 ' L'...68%Joss--riverine tidal forest

B Sandflat
Estuarine emergent
5000 0 5000 10000 Meters Estuarine shrub
Riverine tidal shrub
Greg Hood Riverine tidal forested




Take Home Messages

Sea level varies over space and time

(and effects of a rise in sea level will likewise vary)

Current estimate for Skagit: 6 - 50” higher by 2100
Small changes can have big impacts

It’s Sea Level Rise + Storms that matter
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SAVING THE LAST GREAT PLACES ON EARTH .
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Integrated Impacts



tal Protection Agency under assistance
is website do not necessarily reflect the
rete 1 Ag ~does mention of trade names or
f Ne n ér recom ul tion for use. Additional support has
Mf Ana e’att Cj,ty Lig : '

-




