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Sea level change (mm)

The Eustatic Component of SLR
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IPCC (2007) estimates of the primary contributions to global mean sea-level change
for 1961 to 2003 (blue) and for 1993 to 2003 (brown), compared to the observed rate
of global sea-level rise from tide gages and satellite altimetry. The bars represent the
90 percent error range. The relative contributions of these components has changed
in recent years, as discussed in this report. SOURCE: Figure 5.21 from Bindoff et al.
(2007).
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Current Rates = 3.2 mm/year
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Sea level change during 1970-2010. The tide gauge data are indicated
in red (Church and White 2006) and satellite data in blue (Cazenave et
al. 2008). The grey band shows the projections of the IPCC Third

Assessment report for comparison.
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For an estuary we must also
consider the “Relative Component™

e O.M. Production (above and belowground)
e Allogenic Sediment Deposition

e Deep Subsidence (or uplift)
e Shallow Subsidence (Primary Compaction and Decomposition)




Relative Sea Level Rise

e O.M. Production (above and belowground)
e Allogenic Sediment Deposition

e Eustatic Sea Level Rise
e Deep Subsidence (or uplift)
e Shallow Subsidence (Primary Compaction and Decomposition)







aUSGS 100+ Years of Land Change for Southeast Coastal Louisiana

science for a changing world

Louisiana

Predicted Land Loss 2000 - 2050

Land Gain 1932 - 2000

- Predicted Land Gain 2000 - 2050
N Louisiana Land Change Study Boundary
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0
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SUMMARY
Coastal Louisiana has lost an average of 34 square miles of land, primarily marsh, per year for
the last 50 years. From 1932 to 2000, coastal Louisiana has lost 1,900 square miles of land, roughly
an area the size of the state of Delaware. If nothing is done to stop this land loss, Louisiana could
potentially lose approximately 700 square miles of land, or about equal to the size of the greater Washington
D.C.-Baltimore area, in the next SO years. Further, Louisiana accounted for an estimated 90 percent

US army Corps of Engineers

Prepared By: 1 ’ A
U.S. Geological Survey of the coastal marsh loss in the lower 48 states during the 1990s. The area shown on this map represents
National Wetlands Research Center over 75 percent of the total land loss for coastal Louisiana.

Latayetsi LA Backdrop is 2000 TM panchromatic band. Map ID: USGS-NWRC 2003-02-0373




Sea Levels

ate that keeps pace with SLR
at switching, convert to open water
grate upslope (no net loss?)
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Estuaries at Risk?

Sediment
Deficits

Rising Sea
Levels

Dikes
Restrict
Upslope Migration




Case Studies

124° 123° 127 121°
{ 1
/'*vs._.&.,-f‘;,'
; o5
NS | Lo
4° Bmsl(:ol-gbga CANQDA
3 el o 3 b
EXPLANATION -Sm,.gwm STATE:
h > Ay N

—--— Drainage-basin boundary
—--— Subbasin boundary

M

190 Mean annual discharge,
in cubic feet per second

§
I, &) TR |
J Glacier Peak

“ /. 1 P
] Elwha, AT 7N S Snolivmish lw’.ne*;—-"J i
Rivers, 5 / :
a8 " 2,000 - B K
Olympic Mountains ™~ % A2 & : 3
NN ¢ k\ ' ~
X N

Dﬁgwallips ’gné’_r,; 670
Duckabush River’510
Hamma. Hamma-]\?i;‘er-560

el

Skokomish River'q ,300

Lake Washington
'-KShip Canal >

47° =

or-o

75 KILOMETER

L al A e A Fipage]




Padilla Bay
* 3000 ha intertidal eel grass
*-30-+0.75 m MLLW

| Legend
®  Fied Saee
l'__] Nodel Aea
Annual AG NPP (gCim*2)
Mg - 307

: Low ©
| Depth (m) Relative to MLLW
.o
A Bl 4. 100
| M omw. 0%
e faendr | JO%.000
¢ Peamiot I 001050
. B os . 100
o 1%
V151200
B ior-2%
| FEIRRTY
| BB ES
Ll

J 9 s 7 Paurvaren s






Skagit delta 1860
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1) Cutoff from historical sources of sediment
2) No opportunity for upslope migration
3) An increasing rate of sea level rise
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Elevation Relative to Initial (cm)
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Rate of elevation change

I site exhibited significant elevation gain

O sites exhibited no significant elevation change

O sites exhibited significant elevation loss

Mean=-0.22 £ 0.27 Cm/yr
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Surface elevation deficit =

sediment elevation change — sea level rise + geologic uplift

mean sediment elevation change = - 0.22 cm/yr
sea level rise = 0.32 cm/yr

geologic uplift = 0.09 cm/yr
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Figure 7. Vertical land movemeynts, from Verdonck (2006). Figure 8. GPS derived current annual vertical deformation rates
(mm/year), from Pacific Northwest Geodetic Array, Central Wash-

ington University, November 2007, www.geodesy.org



Surface elevation deficit

ALL sites exhibit a surface elevation deficit

Mean=-0.45 +£0.27 cm/yr

Elevation gain is NOT sufficient to keep pace with sea
level rise




A Dynamic Equilibrium
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1. Data Collection For Model Development,
Initialization, Calibration, and Validation

v

2. Model Development
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Hydrodynamic Sediment Transport Relative Elevation and
Model Model Habitat Model

3. Sea Level Rise and Restoration Scenarios
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Rate of sea level rise = 0.33 cm/yr

Kairis and Rybczyk (2010)



Levee (to be removed)
- TheNature @

Conservancy
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SET Locations Protecting nature. Preserving life”

Sources: Google Earth 2009 Air Photo | 1983 UTM Zone 10 | June 2011 | Cartographer: Kate von Krusenstiern
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Levee (to be removed)
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Sources: Google Earth 2009 Air Photo | 1983 UTM Zone 10 | June 2011 | Cartographer: Kate von Krusenstiern




Maximizing System Resilience

e Measure and monitor current
conditions (models too).

e Maximize opportunities for
sediment delivery and trapping
(open the system to pulsing).

e If connected, protect. If
disconnected, connect.

e Allow for upslope migration.




