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Executive Summary 
This report describes a new tool that is designed to support climate-robust culvert design. 
In addition, the report describes an evaluation of the meteorological and streamflow 
datasets that are the basis for the tool, with the goal of supporting the use and 
interpretation of the results. Building on existing efforts, this work consisted of three tasks: 

Task 1: Climate Data Validation.  

We compared available historical climate datasets against independent observations for 
a few weather stations in or near the Skagit basin. Although limited by a lack of 
independent observations, the analysis suggests that monthly total and water year 
maximum precipitation are both well-captured by the dataset used to develop the new 
tool.  

Task 2: Streamflow Data Validation.  

We evaluated historical streamflow simulations for currently-available datasets, 
comparing observations with simulated flows for 11 small streams in the vicinity of the 
Skagit basin. The results indicate that the primary dataset used in the tool, and in previous 
work, performs about as well as other readily-available historical streamflow datasets. 
Most sites show good agreement between observed and modeled streamflow, although 
simulations for a few of the smallest low elevation sites differ substantially from the 
observations.  

Task 3: Probabilistic Estimates of Culvert “Failure”.  

We developed an approach to estimating the probability of culvert failure over a given 
design lifetime, defining “failure” to mean that there is a statistically significant increase in 
bankfull width (BFW) for a given year within the design lifespan, such that a culvert no 
longer meets the state’s established design criteria for culvert size as a function of BFW. 
A new online tool (Figure 1) allows users to query climate change projections and 
evaluate the probability of failure for different culvert sizes selected by the user. 
Specifically, the tool allows users to pick their location of interest, and then asks them to 
enter three pieces of information: 

1. Current bankfull width,  
2. Design lifetime, 
3. Proposed culvert width 

Based on these criteria, the tool calculates the probability that the proposed culvert size 
would fail to meet the state’s design criteria over its design lifetime. 

By emphasizing relative changes in streamflow (% change) our approach minimizes the 
influence of model biases. The approach is also an improvement over past studies in that 



Climate Robust Culvert Design  2018 

 5 

it provides a specific estimate of the probability of failure during the design lifespan, 
integrating the range of model projections into a single number summarizing the 
implications for a particular culvert size and location. The tool is flexible and designed to 
accommodate a range of different design lifetimes and proposed culvert sizes. 

The following sections describe the results of these three tasks. Additional results can be 
found online at the project website: 

https://cig.uw.edu/our-work/decision-support/culvert-phase-2/  

  

 

 
Figure 1. Screenshots of the culvert design tool. The top 
panel shows the first screen, where the user selects the 
area of interest. The bottom panel shows the subsequent 
screen, in which the user can enter design parameters and 
evaluate the likelihood that a culvert will not continue to 
meet the Stream Sim standard as a result of future changes 
in streamflow. 
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Background 
Apart from a few special cases, Washington State culverts are required to be sized based 
on the Stream Simulation (or “Stream Sim”) guidance issued by the Washington 
Department of Fish and Wildlife (WDFW; Barnard et al. 2013, 2015). In this approach, 
culverts are sized based on a simple linear function of BFW: 

 Culvert	Width = 1.2	×	BFW + 2	ft Eq.	1	

This reflects a geomorphic approach to culvert design that is intended to be applicable 
across a large range of situations. Bankfull width is a well-established metric that is 
generally straightforward to measure in the field, though in some instances it can be 
obscured by debris flows, vegetation loss, or the presence of multiple channels. 

At larger stream widths, there can be important trade-offs. For instance, larger culverts 
may require a wider road “prism” – the sloped dirt and rock bordering elevated roadways 
that provide structural support – in order to accommodate the larger height of the road 
relative to the bottom of the culvert. This increase in width necessitates a longer culvert, 
and the additional fill can further disrupt either in-stream or adjacent habitat. Similarly, 
WDFW recommends a bridge in lieu of a culvert for streams with BFW greater than 15 ft. 
This can significantly increase the cost of a stream crossing. 

Future changes in BFW have previously been estimated by Wilhere et al. (2016) using 
hydrologic projections developed by Hamlet et al. (2013). Wilhere et al. estimated the 
percent change in BFW derived from projected changes in runoff. This percent change 
can then be applied to direct observations of channel width. This approach reduces the 
influence of bias in the hydrologic simulations. 

There are two primary challenges to estimating future changes in BFW from streamflow 
simulations: (1) Current modeling cannot reliably capture the processes responsible for 
determining channel width (erosion, deposition, etc.), and (2) Uncertainties in climate 
change projections lead to a wide range among estimates of future BFW. Past work, 
described below, has developed technical approaches to addressing these challenges, 
and this report describes some new advances that facilitate use of the projections in spite 
of these uncertainties. In addition, users will need to decide – or obtain guidance – on 
what level of risk is acceptable. 

Wilhere et al. (2016) address the first issue by using results from Castro and Jackson 
(2001), which evaluated the relationship between observed streamflow and channel 
geometry for a wide range of streams across the Pacific Northwest. In that study, Castro 
and Jackson relate BFW and peak streamflow statistics via an exponential relationship: 

 BFW = αQ: Eq.	2	

Where 𝑄 is the peak flow statistic for a particular return frequency (or, alternatively, the 
annual chance of exceedance) and 𝛼 and 𝛽 are fitted parameters that relate streamflow 
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to BFW. Different sets of parameters were estimated for three different ecoregions in 
Washington State: Pacific Maritime Mountains, the Western Cordillera, and the Columbia 
Basin (Table 1, Figure 2). In Castro and Jackson (2001), as in our analysis, streamflow 
statistics were estimated from the water year maxima in daily observed flows. 

There are limitations to this 
approximation. First, the Castro and 
Jackson analysis is focused on the 
relationship between flow and 
channel width in large rivers. This 
approximation is unlikely to be as 
pertinent for small culvert streams, 
particularly given the relatively larger 
influence of vegetation on smaller 
channels. Second, channel evolution 

 
Figure 2. Ecoregions used to define the parameters relating bankfull width (BFW) to 
peak streamflow statistics across Washington State (Castro and Jackson 2001). 
Source: Copied, with permission, from Wilhere et al. 2016. 

Region 𝑸 𝜶 𝜷 

Pacific Maritime Mountains 1.2-yr 2.37 0.50 

Western Cordillera 1.5-yr 3.50 0.44 

Columbia Basin 1.4-yr 0.96 0.60 

Table 1 Parameters used to relate bankfull width (BFW) 
to peak streamflow statistics. The parameter 𝛼  is 
included even though it is not used in our analysis. 
Source: Castro and Jackson (2001). 
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is complex and depends on many factors, including the channel slope, substrate, land 
cover, the influence of groundwater, and the history of human modification (e.g., 
Buffington 2012, Hession 2003, Booth 1990, Booth 2015). These issues highlight the 
need for future work to evaluate the Castro and Jackson (2001) approximation and 
determine if a better approach is needed. 

The second challenge – dealing with the uncertainty in climate change projections – 
relates to three primary sources of uncertainty: 

1. Natural variability in climate. Fluctuations in climate can systematically skew the 
estimates of BFW, particularly given its dependence on rare events, on time scales 
ranging from years to a few decades. 

2. Uncertainty in greenhouse gas scenarios. Future emissions of greenhouse gases 
depend on a range of possible changes in human behavior, population growth, 
and technological innovations (see Section 1 of Mauger et al. 2015).  

3. Differences among model projections. Global climate models, “downscaling” 
techniques, and hydrologic models can all differ in terms of the way they represent 
climate, weather, and hydrology. As a result there is a range among projections of 
future BFW. 

Natural variability is typically addressed by using 30-year periods to calculate statistics, 
and this time frame is considered adequate for capturing extreme statistics near the mean 
annual flood, such as the 1.5-year flood.  

Since likelihoods are not assigned to greenhouse gas scenarios and climate models 
project different 21st century changes, many studies have attempted to assess the range 
of outcomes from a large group of GCM projections and a smaller number of greenhouse 
gas scenarios (Hamlet et al. 2013). Users of the tool can then evaluate the range among 
projections to make a decision about how they want to manage risks. For example, more 
risk averse users may choose to more heavily weight high-impact scenarios, whereas 
more risk tolerant users may more strongly value consensus in the models, and/or make 
use of conservative estimates of impacts (e.g. use estimates of change which are 
exceeded in 90% of the scenarios).   

Model uncertainty is generally assessed by considering projections from a range of 
models. It is important to note, however, that this is an approximation of the uncertainty, 
since GCMs are rarely independent and hydrologic datasets only rarely include multiple 
“downscaling” approaches and hydrologic models. In addition, GCMs are not the only 
component of model uncertainty. GCMs represent the climate at coarse spatial scales, 
and therefore need to be “downscaled” to estimate the corresponding changes at local 
scales. There are two general approaches to downscaling: (1) Statistical, in which 
empirical relationships between historical GCM simulations and surface weather 
observations are extrapolated forward in time, and (2) Dynamical, in which a GCM is used 
to drive a finer-scale regional climate model. Statistical approaches are inexpensive to 
implement and readily available, but are less reliable in topographically complex areas, 
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especially where few observations are available. Dynamical approaches capture 
important physical processes that are absent from statistical downscaling (Salathé et al. 
2010), but are restricted to only a few GCM projections, and have not been as thoroughly 
tested. For example, although there are a few hydrologic datasets based on dynamically 
downscaled projections (e.g., Salathé et al. 2010), there are currently no ensemble 
hydrologic datasets derived from dynamical downscaling that encompass the full range 
of GCM projections. 

The statistical downscaling approach that Wilhere et al. (2016) used results in a 92-year 
record that replicates the statistics of each time period (Hybrid Delta, from Hamlet et al. 
2013; hereafter referred to as “HB2860”).1 Projections are based on a single greenhouse 
gas scenario that represents a middle estimate of future emissions (A1B, Nakicenovic et 
al. 2000). Wilhere et al. (2016) evaluated changes in BFW using two 30-year periods 
centered on the 2040s and 2080s. They suggest using two metrics for evaluating changes 
in BFW: (1) percent change in BFW, and (2) number of models projecting an increase in 
BFW. As an example, they define “actionable” locations as those for which the mean 
increase in BFW is >5% and for which at least 6 of the 10 models show an increase.  

As described in Section 3, we took a similar approach to Wilhere at al. (2016). Specifically, 
we used the same definition that culvert “failure” occurs when the Stream Simulation 
design standard is exceeded by a statistically significant amount. In practice, culverts can 
fail due to a wide variety of issues related to debris, scour, etc. Instead of attempting to 
characterize each failure mechanism, we take the same approach as Wilhere et al. (2016) 
and define failure based on the state’s regulatory standard for culvert width.  

We also used the same dataset of streamflow projections as Wilhere et al. (2016): 
HB2860. There are three reasons we chose to use the HB2860 projections: 

1. There are currently no publically available dynamically downscaled streamflow 
projections for Washington State that provide a sufficiently large ensemble of 
projections (e.g., comparable to HB2860),  

2. Recent work has shown that newer statistically downscaled datasets (e.g., Mote 
et al. 2017) have significant biases (Mauger et al. 2016), and 

3. Wilhere et al. (2016) used HB2860 and are familiar with this product.  (i.e. by using 
the same dataset, our results are more consistent with their analysis.) 

We note, however, that our approach differs somewhat from Wilhere et al. in that we used 
a different set of projections from the Hamlet et al. dataset. Instead of Hybrid Delta, we 
used the monthly Bias Correction and Spatial Downscaling (BCSD) projections from 
HB2860. This was done to allow a unique probability distribution to be constructed for 
each design year in the future. In addition, we developed an approach to estimating the 
probability that a culvert’s designed size (either proposed or “as built”) will be significantly 
                                            
1 “HB2860” refers to the Washington State legislative bill that funded the project. Results are available online at: 

http://warm.atmos.washington.edu/2860/ 
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exceeded as a result of climate change over a given design lifetime. These new results 
are incorporated in a user-friendly tool that is designed to be easily integrated into the 
process of selecting an appropriate culvert design. Our projections should generally show 
comparable changes to those of Wilhere et al. (2016), but with a new perspective afforded 
by the probabilistic approach.  
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Task 1: Climate Data Validation  
Surface weather observations – in particular long-term high-quality records – are typically 
sparse in spatial coverage, and tend to be biased towards low elevation areas near 
population centers. This means that the majority of point observations are generally sub-
optimal for use in hydrologic modeling studies, in which the manifestation of large-scale 
weather patterns may be very different from one part of the watershed to another – in 
particular in areas with complex terrain. In addition, hydrologic models often employ a 
gridded spatial structure, meaning that daily weather conditions must be interpolated from 
each observation point onto a grid in order to run the model. 

As with statistically- and dynamically-downscaled climate projections, gridded historical 
datasets can also be generated using these two distinct approaches. In the statistical 
approach, station observations are interpolated onto a grid and then adjusted to account 
for proximity and topography (e.g., Livneh et al. 2013, 2015). The dynamical approach, in 
contrast, uses large-scale observed weather conditions as boundary conditions for a 
finer-scale regional climate model simulation (e.g., Salathé et al. 2010).  

The purpose of the current evaluation is to support the interpretation of our probabilistic 
projections (Section 3) in the Skagit river basin. Although the primary focus is on the 
HB2860 dataset, other historical datasets are included in order to better understand the 
relative performance of each. 

Observational Data 
In this task we provide a few spot comparisons between observed weather and a selection 
of currently-available gridded historical datasets. A key detail here is that the validation 
data must be independent of the data used to create the gridded datasets. This limits the 
analysis to only a few stations. In this study, we focus on three observational networks: 
(1) the NOAA Climate Reference Network (CRN, https://www.ncdc.noaa.gov/crn/), (2) the 

Table 2. Weather stations sites used in the analysis. Sites are listed from lowest to highest elevation. 

Name ID Lat. Long. Elev (m) Source Years 

Fir Island FirIsland 48.360 -122.420 0 AgNet 2008-2017 

Mt. Vernon MtVernon 48.440 -122.390 7 AgNet 1993-2017 

Sakuma Sakuma 48.497 -122.378 9 AgNet 2006-2017 

Sedro Wooley SWYW1 48.522 -122.224 52 RAWS 2013-2017 

Darrington 221 NNE* 451998 48.540 -121.446 124 CRN 2004-2017 

Finney Creek FIFW1 48.392 -121.818 658 RAWS 2000-2017 

Gold Hill GHFW1 48.243 -121.546 1021 RAWS 2000-2017 
* Although labeled “Darrington”, this station is actually located about 20 miles north of Darrington in 
Marblemount. 
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WSU Ag Weather Net, a network of weather stations aimed at monitoring weather in 
agricultural areas (https://weather.wsu.edu/), and (3) the National Interagency Fire 
Center’s (NIFC) Remote Automated Weather Stations (RAWS, https://raws.nifc.gov/). 

Weather stations were selected to cover a range of elevations, all in the vicinity of the 
Skagit watershed (Table 2). To ensure robust statistics, we required that at least 25 days 
of valid daily data be present for each month for the monthly statistics, and that all 12 
months meet this criteria in order to record the water year statistics. This is similar to the 
approach taken by NOAA in processing the Cooperative Observer (COOP) station 
records. For some stations, these criteria significantly limited the number of valid months. 

Model Data 
Daily historical weather data were compared for five different datasets (Table 3), 
representing both the statistical and dynamical approaches described above. Additional 
information about each of these datasets can be found in the references provided in the 
table. All results were aggregated to daily data for the comparisons. Data were extracted 
from each dataset for the grid cell closest to each weather station. 

Results 
Overall, these data proved very limited for evaluating the gridded historical datasets, 
primarily due to a significant amount of missing or invalid data in the observations. After 
filtering for months and years that had a sufficient number of valid observations (i.e., a 
minimum of 25 days of valid data per month, with all 12 months meeting this criteria for 
water year statistics), very little data remained with which to compare against the gridded 
datasets. In part this is due to the length of the records: the longest observational record 
among all 7 stations is 25 years, and the shortest is just 5 years long. In addition, the 
gridded datasets end as early as 2006, which limits the number of overlapping years 
available for comparison. In part this limitation is by construction: in order to maximize the 
information available to the interpolation, the gridded datasets strive to incorporate as 

Table 3. Historical meteorological datasets that were evaluated in the current study. 

Short Name Resolution Time Step Years Type Citation 

HB2860 1/16-deg.* 1 day 1915-2006 Statistical Hamlet et al. 2013 

bcLivneh 1/16-deg.* 1 day 1950-2013 Statistical Livneh et al. 2015, 
Mauger et al. 2016 

Livneh 1/16-deg.* 1 day 1950-2013 Statistical Livneh et al. 2015 

WRF-NNRP 12 km 6 hours 1950-2010 Dynamical Dulière et al. 2011, 
Salathé et al. 2010 

WRF-PNNL 6 km 1 hour 1979-2015 Dynamical Ruby Leung, personal 
communication. 

* about 5 x 7 km. 



Climate Robust Culvert Design  2018 

 13 

much available data as can be obtained. This makes it challenging to identify independent 
observations that can be used to validate the gridded datasets.  

In spite of these limitations, we present two comparisons showing the performance of the 
gridded datasets for the seven sites listed in Table 2. Given the large amount of missing 
data, the water year statistics are particularly sparse. As a result, Figure 3 shows a 

 
Figure 3. Comparing average monthly precipitation for the observations (thick black lines) and 
gridded historical datasets (colored lines). Due to missing data, some of the months are absent 
from the observations. 
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comparison of average monthly precipitation for each site. In this case, the averages 
include any years and months for which there is valid data, meaning that the time periods 
may not always overlap. In addition to showing a wide range of precipitation among the 
seven sites, the results show a wide range among gridded datasets. Most of the datasets 
agree well with the observations, with two exceptions: (1) the WRF-NNRP simulation 
generally over-predicts precipitation, and (2) only the WRF-PNNL appears to capture 
precipitation at the Gold Hill location. This latter finding is interesting, given the high 
elevation location of Gold Hill and the known challenges for the interpolated datasets in 
mountainous areas. 

Although the monthly averages provide a valuable first look at the results, heavy 
precipitation events are of primary interest in the current analysis since changes in 
bankfull width are thought to be driven by high flow events. In addition, given our 
emphasis on the relative changes in streamflow, it makes more sense to consider the 
correlation of each dataset with the observations. We computed correlations for all time 
series that overlapped by at least five years. Although five years is not sufficient to capture 
the effects of long-term variability, this was chosen as a compromise given the short 
records and lack of overlap among the available data.  

Table 4. Correlations between the observed maximum in daily precipitation for each 
water year and the corresponding values in each gridded dataset. Blank squares 
indicated that there were less than 5 years of overlapping data from which to compute 
a correlation. 
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Model End Year  2006 2013 2013 2015 2010 

Fir Island (AWN) 2009 – 0.59 0.21 0.12 – 

Mt Vernon (AWN) 1999 0.93 0.78 0.71 -0.09 0.02 

Sakuma (AWN) 2008 – 0.80 0.60 0.04 – 

Sedro Wooley (RAWS) 2015 – – – – – 

Darrington (CRN) 2005 – 0.72 0.75 0.82 0.51 

Finney Creek (RAWS) 2014 – – – – – 

Gold Hill (RAWS) 2009 – – – – – 
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Table 4 shows the correlations for the water year maximum in daily precipitation. For 
comparison, Table 5 shows the correlations for total water year precipitation. As can be 
seen from the tables, there are many comparisons for which there were less than the 
minimum five years needed to estimate a correlation. Unfortunately, this is particularly 
limiting for HB2860: the primary dataset used in the present study. Although limited, the 
results do provide two potential insights. First, the correlations for total annual 
precipitation are much better than those for extreme precipitation. This is not surprising, 
given that the entire region tends to vary in concert at seasonal and longer time steps. 
However it is worth noting since the differences are so dramatic – in one case even going 
from a negative to a positive correlation. Second, the dynamical datasets appear to under-
perform at capturing the extremes in precipitation. This is surprising, given that the 
anticipated benefit of the dynamical approach is that it better captures the conditions away 
from existing weather stations, particularly for the extremes. One explanation for this 
could be that the only stations that we have been able to evaluate are either at relatively 
low elevations or near existing observations that are already ingested in the interpolated 
datasets (e.g., the Darrington CRN station is likely co-located with the existing COOP 
station that HB2860 and Livneh use in their interpolations). 

Overall there is insufficient data from which to draw a conclusion about the performance 
of these datasets. The sites included here are too few and cover too small an area to 
reliably draw conclusions about each of the datasets. Nonetheless, the comparisons do 
indicate general agreement with the observations while also showing notable differences 
in performance. Specifically, this analysis suggests that monthly total and water year 
maximum precipitation are both well-captured by the statistically-generated gridded 

Table 5. As in Table 4 except showing correlations for the water year total in precipitation. 
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Model End Year  2006 2013 2013 2015 2010 

Fir Island (AWN) 2009 – 0.92 0.92 0.61 – 

Mt Vernon (AWN) 1999 0.98 0.78 0.45 0.49 0.69 

Sakuma (AWN) 2008 – 0.11 0.80 0.52 – 

Sedro Wooley (RAWS) 2015 – – – – – 

Darrington (CRN) 2005 – 0.94 0.97 0.65 0.84 

Finney Creek (RAWS) 2014 – – – – – 

Gold Hill (RAWS) 2009 – – – – – 
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datasets, including HB2860. Additional work would be needed to confirm that this pattern 
is present elsewhere in the state and at higher elevations.  
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Task 2: Streamflow Validation 
Few validations have evaluated hydrologic simulations over a number of small 
catchments as opposed to large river sites. In this section we evaluate the results of the 
hydrologic simulations for a number of small streams with long-term gauges. As with the 
climate data validation, this evaluation is simply intended to support the interpretation of 
our probabilistic projections (Section 3) in the Skagit river basin. The primary focus is on 
the HB2860 dataset, which is the basis for our projections. Other historical datasets are 
included in order to compare the performance of each approach. 

Observational Data 
There are no streamflow estimates that are specific to any particular culvert in the Skagit 
basin. However, several streamflow gauges exist for small creeks in the area (Table 6). 
Sites were chosen to encompass a range of elevations and emphasize smaller 
catchments. Although most are larger than a typical culvert catchment, these were the 
smallest streams with available observations in the vicinity of the Skagit basin. For 
example, the catchment area for Thunder Creek is 105 square miles; much larger than a 
typical culvert stream, which tend to range from about 0.5 to 2 square miles. We 
nonetheless evaluate results for this site because it is small compared to mainstem Skagit 
sites, and there are no other long-running gauges at similar elevations in the area. 

Table 6. Streamflow sites used in the analysis. As in Table 2, sites are listed from lowest to highest 
elevation. 

Name ID Lat. Long. Elv. 
(ft) 

Area 
(sq. mi) Source Years 

Fishtrap Cr at Front St at Lynden 12212050 48.939 -122.478 54 37.8 USGS 1998-2018 

Hansen Cr. Near Sedro Wooley 03J100 48.531 -122.201 89 7.02 ECY 2005-2018 

Anderson Cr at Smith Rd Nr 
Goshen 12210900 48.833 -122.338 200 8.96 USGS 1998-2018 

Anderson Cr Nr. Bellingham 12201950 48.674 -122.266 315 4.13 USGS 1967-2018 

Olsen Creek Nr. Bellingham 12202300 48.751 -122.352 315 3.78 USGS 1967-2018 

Euclid Cr at Euclid Ave at 
Bellingham 12202400 48.749 -122.408 320 0.54 USGS 2001-2018 

Carpenter Cr Nr Bellingham 12202310 48.754 -122.353 320 1.17 USGS 2002-2018 

Silver Beach Cr at Maynard Pl at 
Bellingham 12202450 48.769 -122.405 320 1.20 USGS 2001-2018 

Brannian Cr at S. Bay Dr Nr 
Wickersham 12201960 48.669 -122.279 330 3.36 USGS 2001-2018 

Skookum Cr Abv Diversion Nr 
Wickersham 12209490 48.672 -122.138 410 23.0 USGS 2008-2018 

Thunder Cr Nr Newhalem 12175500 48.673 -121.072 1,220 105 USGS 1930-2018 
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Model Data 
Although not all of the climate datasets evaluated in Section 1 have been used to produce 
hydrologic simulations, several do include streamflow estimates that can be used in the 
current validation. In several instances the same meteorological dataset has been applied 
to different combinations of hydrologic models and calibration approaches, resulting in 
different streamflow estimates for the same dataset.  

Table 7 lists the datasets used in our comparisons. All are produced at a resolution of 
1/16-degree (about 5x7 km). As in Table 3, the “Type” column refers to the approach: 
“statistical” datasets are created by interpolating from surface weather station 
observations, while “dynamical” datasets require a regional climate model simulation, 
driven by observations, to develop historical meteorological estimates. In all cases, the 
meteorological estimates are then run through a hydrologic model to obtain streamflow 
estimates. Streamflow was estimated by computing an area-weighted sum over all grid 
cells that overlap with the contributing basin for each streamflow gauge. Larger rivers 
often require an extra post-processing step in which runoff estimates are “routed” through 
the stream network based on an assumed time distribution for flow (e.g. Hamlet et al. 
2013). In this study, routing is not necessary since the basins are small enough that the 
time required for water to travel to the outlet of each catchment is less than the model’s 
time step of one day.  

Although additional streamflow estimates could presumably be obtained from recent fine-
scale hydrologic modeling using the Distributed Hydrology Soil Vegetation Model 
(DHSVM; Bandaragoda et al. 2015), doing so would require modifying the DHSVM model 
to include additional streamflow locations at all culvert sites of interest, then re-running 
the simulations. This was not deemed feasible for the current study. 

 Table 7. Historical streamflow datasets that are evaluated in the current study.  

Short Name Years Type Citation 

HB2860 1915-2006 Statistical Hamlet et al. 2013 

bcLivneh 1950-2013 Statistical Livneh et al. 2015, Mauger et al. 2016 

WRF-NNRP 1950-2010 Dynamical Dulière et al. 2011, Salathé et al. 2010 

Livneh 1950-2013 Statistical Livneh et al. 2015 

CRCC-PRMS-1 1950-2011 Statistical Chegwidden et al. 2018, Livneh et al. 2013 

CRCC-VIC-1 1950-2011 Statistical Chegwidden et al. 2018, Livneh et al. 2013 

CRCC-VIC-2 1950-2011 Statistical Chegwidden et al. 2018, Livneh et al. 2013 

CRCC-VIC-3 1950-2011 Statistical Chegwidden et al. 2018, Livneh et al. 2013 
 



Climate Robust Culvert Design  2018 

 19 

Results 
In order to evaluate the implications for culverts, the analysis is focused on peak flows. 
Peak flow statistics are computed as in previous studies (e.g., Tohver et al. 2014). 
Specifically, a “block maximum” approach is taken, in which the maximum daily flow value 
is extracted for each water year (Oct-Sep). These peak flow values are used to evaluate 
the correlations with each observationally-based dataset (Table 7). Flow estimates for 
specific recurrence intervals (e.g., 2-year flood) are calculated by fitting the peak daily 
flows to a Generalized Extreme Value (GEV) distribution, then extracting the appropriate 
quantile from the fitted distribution (e.g., the 2-year flood corresponds to the 50% chance 
of exceedance while the 10-year corresponds to the 10% chance event). 

All comparisons are made available on the project website; here we provide a few 
examples. Figure 4 shows the results for the Skookum and Thunder Creek sites. As is 
expected, the datasets that include the Livneh cold bias (discussed below) tend to 
overestimate the importance of snow, resulting in a corresponding underestimate of 
winter runoff. This distinction is not detectable for the Thunder Creek site, reflecting the 
greater sensitivity of the Skookum Creek simulations given its closer proximity to the 
snowline. 

Correlations, taken from the overlapping period between the observations and each 
model dataset, reflect a similar heterogeneity in model skill (Table 8). The table shows 
the correlation, for each streamflow site, with each of the model datasets. Correlations 
are taken for the overlapping period between the observations at each gauge site and 
each of the modeled streamflow datasets. Although for Thunder Creek the correlations 
are based on more than 60 years of data, the sample size is generally confined to 10 
years or less for the other sites. 

     

Figure 4. Example results for two of the 11 streamflow sites included in the analysis. In each panel, 
the top plot shows a comparison of monthly average flows for each dataset, while the bottom panel 
shows results for the 2- and 10-year flood. 
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There is substantial variability in the correlations for different sites, due to both the shorter 
records and the fact that model performance may differ from one site to the next (e.g., 
Figure 4). However, correlations for the bcLivneh and WRF-NNRP datasets are generally 
among the highest for the eight datasets evaluated. 

Correlations emphasize the degree to which the models track the variability in the 
observations. This is the primary measure of interest in the current study, since the 
emphasis is on percent changes in bankfull flows. Nonetheless, it is important to also 
evaluate the absolute biases that are not captured in a correlation. Figure 5 shows the 
mean percent bias for the 2-year flood, for all sites and all datasets. As with the 

Table 8. Correlations between the observed peak in daily flows for each water year and the corresponding 
estimates from each gridded dataset. 
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Model End Year  2006 2013 2013 2010 2011 2011 2011 2011 

Fishtrap Cr at Front St at 
Lynden 1999 0.60 0.64 0.54 0.34 0.65 0.50 0.63 0.49 

Hansen Cr. Near Sedro 
Wooley 2005 – 0.08 -0.06 -0.18 -0.13 0.01 -0.02 -0.17 

Anderson Cr at Smith Rd Nr 
Goshen 1999 0.87 0.84 0.65 0.11 0.69 0.44 0.68 0.72 

Anderson Cr Nr. Bellingham 2008 – 0.84 0.73 0.96 0.58 0.69 0.65 0.46 

Olsen Creek Nr. Bellingham 2002 0.84 0.53 0.33 0.16 0.27 0.05 0.23 0.34 

Euclid Cr at Euclid Ave at 
Bellingham 2002 0.19 0.65 0.48 0.66 0.47 0.39 0.53 0.32 

Carpenter Cr Nr Bellingham 2002 0.92 0.51 0.37 0.14 0.32 0.30 0.29 0.18 

Silver Beach Cr at Maynard 
Pl at Bellingham 2002 0.22 0.54 0.52 0.35 0.58 0.42 0.60 0.39 

Brannian Cr at S. Bay Dr Nr 
Wickersham 2002 0.88 0.91 0.85 0.12 0.81 0.83 0.82 0.76 

Skookum Cr Abv Diversion 
Nr Wickersham 1999 0.41 0.63 0.27 0.01 0.41 0.42 0.46 0.49 

Thunder Cr Nr Newhalem .1951* 0.62 0.59 0.26 0.46 0.58 0.34 0.36 0.29 

* Although the observational record for Thunder Creek starts in 1931, the correlation was assessed starting in 1951 
to allow for greater consistency across gridded datasets. 
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correlations, there are considerable differences among datasets. In general, the HB2860 
dataset performs as well, or better, than the other datasets evaluated. 

It is worth noting the particularly poor results for Hanson Creek. One potential issue is the 
particularly short record, given that observations did not start until 2005. Although it 
should not affect the results, this is the only gauge site retrieved for the WA Department 
of Ecology network. Additional investigation would be needed to better diagnose the 
reason behind the biases for this site. 

Overall, this analysis suggests that the HB2860 dataset performance is comparable to 
that of other readily-available historical streamflow datasets. Although some sites do 
show large biases, most show general agreement in both the magnitude and variation in 
monthly average and extreme flows. As in the previous section, it is worth noting that the 
scope of this analysis is relatively limited, and a more thorough assessment would be 
needed to determine if the same results hold for the region as a whole. 

 

Figure 5. Percent bias, relative to observations, in the historical 2-year flood. Results for the HB2860 
dataset, used in Section 3 of this report, are highlighted with the large blue circle. Sites are ordered 
from lowest elevation on the left to highest elevation on the right. 
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Task 3: Estimating the likelihood of Culvert “Failure” 
In this study we adopt the same Castro and Jackson (2001) approach to estimating 
changes in BFW, and follow the Wilhere et al. (2016) definition that culvert “failure” occurs 
when the Stream Simulation design standard is exceeded. We also use the same dataset 
of streamflow projections. 

As in previous studies (e.g., Tohver et al. 2014, Wilhere et al. 2016), our analysis is 
focused on the projected change in BFW as opposed to its absolute magnitude, or scale. 
By only considering the relative change – the ratio of future BFW to historical BFW – our 
approach is not sensitive to absolute biases in the models. 

Our approach differs from Wilhere et al. (2016) in the treatment of uncertainty. Building 
on the work of Byun and Hamlet (in prep), we take a new approach that we believe is 
more robust to uncertainty, by estimating the uncertainty in extreme statistics and 
evaluating changes over time instead of for a few discrete decades. In addition, we 
estimate the probability that a culvert’s designed size (either proposed or as built) will be 
exceeded as a result of climate change over a given design lifetime. This “probability of 
under design” represents the likelihood that a culvert’s design parameters will be 
significantly exceeded when calculated using projected conditions in the future. All of the 
results are integrated into a user-friendly tool that is designed to be easily integrated in 
culvert design. 

Data 
For consistency with the Wilhere et al. (2016) study, we use results from the same dataset 
(HB2860, Hamlet et al. 2013). However, since our analysis is predicated on evaluating 
the time evolution of changes, we use the transient projections from that dataset, 
produced using the monthly Bias Correction and Spatial Downscaling (BCSD) approach. 
This approach results in a continuous time series of daily temperature and precipitation 
spanning from 1950-2099 for each global model and greenhouse gas scenario. As with 
all projections in this dataset, the BCSD are based on global climate model simulations 
archived as part of the Coupled Model Intercomparison Project, Phase 3 (CMIP3, Meehl 
et al. 2007) multi-model database. In the current project we evaluated projections for six 
global models (CCSM3, CGCM3.1-t47, CNRM-CM3, ECHAM5, ECHO-G, and PCM1) 
and one greenhouse gas scenario (the moderate “A1B” scenario, Nakicenovic et al. 2000; 
for more on climate scenarios see section 1 of Mauger et al. 2015). Hydrologic projections 
were produced using the Variable Infiltration Capacity (VIC) macroscale model (Liang et 
al. 1996, 1998; specifics on the model configuration and performance can be found in 
Hamlet et al. 2013). The result is a set of gridded estimates of daily future hydrology, 
including both surface and subsurface runoff, at a spatial resolution of 1/16-degree (about 
5x7 km). 

It is important to note that newer datasets are available. For example, the recent 
Integrated Scenarios (Mote et al. 2016) and Columbia River Climate Change 
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(Chegwidden et al. 2018) datasets include a number of advances in statistical 
downscaling and hydrologic modeling approaches, and are also based on the new CMIP5 
(Taylor et al. 2012) global models and greenhouse gas scenarios. However, recent 
evaluations of these datasets (e.g., Mauger et al. 2016) have shown substantial 
temperature biases in the Livneh et al. (2013) dataset that these use as a basis. Similarly, 
recent research has shown that dynamical downscaling is needed to accurately capture 
changes in streamflow extremes (Salathé et al. 2014). Although such projections may 
prove to be superior in the long run, at present these have not been produced for an 
adequate number of large-scale forcing scenarios to adequately characterize the 
uncertainty in projections, nor have they been used to produce new calibrated hydrologic 
model projections for the region. Based on these considerations and the desire to 
maintain consistency with Wilhere et al. (2016), we used the HB2860 dataset in the 
current study. 

Methods 

Calculating Percent Changes in Future Bankfull Width (BFW) and Associated Culvert 
Design Widths 

The methods used in this section are an extension of Monte Carlo flood analysis approach 
developed by Byun and Hamlet (in prep.). We use the daily streamflow estimates from 
the HB2860 dataset to estimate annual variations in bankfull width for each 1/16-degree 
grid cell in Washington State. We take a number of steps to ensure that our estimates are 
robust to uncertainties in extreme statistics and the confounding effect of natural 
variability on estimates of long-term trends. Specifically, we processed the data as 
follows: 

1. Calculate BFW statistics using a moving 30-year window.  

The window is left-adjusted, so that the statistics for any given year are calculated 
from the model results for the previous 30 years (e.g., for 2027, statistics were 
calculated based on the 30 years from 1998-2027). We chose to consider only prior 
years given the anticipated adjustment time for BFW.  

2. Bootstrap the probability distribution BFW. 

As described above, BFW is approximated as an exponential function of the 1.2, 1.4, 
or 1.5-year peak flow (Table 3.1). In order to ensure a robust estimate, we take a 
Monte Carlo approach, repeating the peak flow estimate by randomly selecting 20-
year subsamples, with replacement, for each 30-year sample. For each sub-sample 
we recalculate the corresponding extreme statistic, repeating this process 1,000 times 
to develop a probability distribution for the BFW flow statistic. 
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3. Calculate the change relative to a common baseline.  

In order to minimize the effect of model biases, we consider only the relative change 
in BFW. This also allows us to scale the results to different catchment sizes of interest, 
since the basin area for each culvert will be different and will rarely correspond to the 
area of a 1/16-degree grid cell. In addition, this ensures that our approach is not 
sensitive to absolute model biases. 

To do this, we divide all estimates of BFW by the estimated BFW in the first year in 
the analysis. In order to provide a contemporary baseline, we evaluate BFW for 2015-
2099, dividing all future values by the BFW estimate for 2015 (estimated from the 
years 1986-2015). Given the bootstrap approach in Step #2, the result is a set of 1,000 
BFW ratios for each year.  

4. Extract the 5th percentile estimate.  

All subsequent analyses are based on the 5th percentile of the 1,000 BFW ratios 
obtained in Step #3. We use the 5th percentile to correspond to a 95% confidence 
interval. That is, we can say with 95% confidence that the “true” ratio is at or above 
that 5th percentile value, based on the uncertainty in the sample statistics established 
in the Monte Carlo simulations. Note that in this case we are assuming that a one-
sided significance test is most appropriate, based on the reasoning that decreases in 
bankfull flows are not of interest.  

(The choice of a 95% confidence level was deemed appropriate for diagnosing a 
statistically significant change in BFW and culvert design size. This choice is arbitrary 
and could be changed based on a policy decision about the level of change in BFW 
that is meaningful.)  

5. Identify statistically significant changes in BFW and calculate future culvert widths 
 
We compared the 5th percentile value of the BFW ratio derived above (expressed as 
a % change in BFW) to a threshold of 0 (no change in BFW). If at any time during the 
design lifespan the 5th percentile values for a given year exceeds a percent change of 
0, this is classified as a statistically significant change in BFW for that year and GCM 
projection (see comparison in Figure 6).  
 
In addition, based on the 5th percentile percent change in BFW, the current BFW 
(provided by the user), and the WDFW culvert design standard (eq 1), the projections 
can be translated from percent changes in BFW (i.e., the 5th percentile ratios from the 
Monte Carlo analysis) to culvert design width. 
 

6. Specify design value and identify failure/no failure for each simulation year 
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We begin by specifying a new threshold for the culvert width associated with a 
proposed culvert design (provided by the user), and then check to see if the 5th 
percentile future values exceed this value.  If the 5th percentile value of simulated 
future culvert width (as outlined in the last part of 5 above) exceeds the specified 
culvert design threshold, then the proposed culvert design results in a “failure” for that 
year, GCM projection, and proposed culvert design width. 
     

7. Repeat steps 1-6 for all six global climate models. 

The first six steps were applied to the six BCSD projections that are currently available 
(CCSM3, CGCM3.1-t47, CNRM-CM3, ECHAM5, ECHO-G, and PCM1), all based on 
the moderate A1B greenhouse gas scenario. The result is six separate time series of 
bankfull width for each grid cell, with each time series starting in 2015 and ending in 
2099. These can be used to assess the likelihood of failure for a particular change in 
culvert size, as described below. 

We tested a number of alternatives to this methodology, and found the approach above 
to be most robust. Specifically, we found that a bootstrap approach based on 1,000 sub-
samples was sufficient to characterize the probability distribution in bankfull flows. 
Similarly, we tested using smaller sub-samples of 10 and 15 years instead of the 20 year 
subsamples chosen. Although both the 15-year and 20-year subsamples gave similar 
results, we found a marked increase in the range of estimates when only 10-years were 
used to calculate the extreme statistics. We interpret this to be a result of under-sampling 
and chose to use the 20-year sample size in the current analysis.  

We also evaluated the approach to estimating the 5th percentile in the ratio of historical to 
future bankfull flows. We first tested if the bootstrap approach could be applied to just the 
first 30-year sample (1986-2015), while only using a single 30-year sample to estimate 
bankfull flows for every subsequent year. This approach results in a much narrower 
probability distribution of bankfull flows, and a resulting overestimate of the change in the 
5th percentile estimate (i.e., because the distribution is narrower, the 5th percentile value 
is higher).  Since this approach neglects the uncertainty in future bankfull flow estimates, 
we interpreted this to mean that the latter approach under-samples the probability 
distribution for changes in bankfull flows. Similarly, we tested whether or not the 5th 
percentile values could be extracted from each distribution before calculating the ratio 
relative to the first year in the record. In this case we also found that the ratio of the 5th 
percentiles resulted in an overestimate relative to first calculating the ratios before 
extracting the 5th percentile in the ratios of bankfull flow. This is again a consequence of 
narrowing the distribution, which results in a higher 5th percentile estimate. As above, this 
is likely a consequence of under-sampling and so was deemed less accurate than our 
current approach of taking ratios for each of the 1,000 random sub-samples for each 
future year, relative to the same for historical.  
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Finally, as noted above we chose to use the HB2860 dataset (Hamlet et al. 2013) in the 
present analysis, since the newer statistically downscaled datasets have substantial 
temperature biases and there are currently no dynamically downscaled hydrologic 
projections that can be used for these purposes. Nonetheless, here we include a 
comparison between an adjusted version of the Integrated Scenarios dataset (Mote et al. 
2016), in which a simple correction has been applied to minimize the effect of the 
temperature biases (hereafter referred to as “bcMACA”; for additional detail see Mauger 
et al. 2016). Results are shown for two model grid cells: one near Mt Vernon (48.46875N, 
122.40625W) and another near Marblemount (48.53125N, 121.46875W). The 
comparison (Figure 6) shows that the results for both datasets are in general agreement. 
Although the scope of the current project does not allow for a more in-depth comparison, 
this suggests that the results of the current study are likely representative of what might 
be found from other statistically downscaled projections. 

 
Figure 6. Comparing bankfull width projections, following the methodology described in this report, 
for the HB2860 dataset (A1B scenario; Hamlet et al. 2013) with those from the bcMACA dataset 
(RCP 4.5 and 8.5 scenarios; Mote et al. 2016, Mauger et al. 2016). The current study uses results 
from HB2860; as shown in the figure, these are in qualitative agreement with those from the 
bcMACA dataset. 
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 Estimating the Likelihood of Failure 

The above approach results in a time series of the projected change in the 5th percentile 
estimate of BFW (expressed as the corresponding culvert width) for each year and each 
of the six projections. We can then ask if, and when, the estimated culvert width exceeds 
some particular threshold (as outlined in step 6 above).  For example, an engineer may 
propose to build a culvert 10% wider than is currently required under the Stream Sim 
guidelines. If the 5th percentile values of BFW ratio established in the Monte simulations 
(again expressed as culvert width, as outlined in step 5 above) exceed the proposed 
culvert design width, that year is identified as a failure for the proposed design. The result 
is a simple binary measure of failure or non-failure for each year and for each climate 
change projection.  

We then combine the results for all projections by taking the fraction of projections that 
showed a culvert failure in a particular year, using this to define the probability that it has 
failed. For example, if two out of six models show a failure in 2037, then the probability of 
failure for that year is 2/6 or 33.3%. 

Once we have an estimate of the probability of failure for each year, we can combine it 
over the relevant years to estimate the total probability of one or more failures over the 
design lifetime of the culvert. This is done by estimating the likelihood of non-failure, since 
doing so greatly simplifies the calculation. The lifetime probability is obtained by taking 
the product of the probability of non-failure for each year in the design lifetime. The 
probability of failure can then be estimated by simply subtracting the probability of non-
failure from one: 

 
𝑃BCDEFCGE = 1 − (1 − 𝑝KL)

N

KLOP

 Eq.	3	

where 𝑃BCDEFCGE  is the probability of failure over the design lifetime, and 𝑝KL  is the 
probability of failure for one particular year (see Byun and Hamlet in prep. for additional 
details.). 

It is important to note that this approach to estimating likelihoods is limited in two ways. 
First, different likelihood estimates must be estimated separately for each greenhouse 
gas scenario. This is because likelihoods cannot be assigned to future emissions of 
greenhouse gases. In the current study, we focus on a moderate scenario (A1B). Different 
results would be obtained for a higher or lower scenario of future emissions. Second, the 
six global climate model projections only provide an approximation of the probability 
distribution of future climatic conditions. In particular, the minimum and maximum 
changes projected by the six models are unlikely to represent the full range of possible 
future conditions. In the current project we make the simplifying assumption that zero out 
of six models means there is no probability of failure, while six out of six corresponds to 
a 100% probability. In reality, each probably corresponds to a more moderate definition 
of the extremes of the distribution (e.g., in IPCC 2013, the spread among projections is 
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often assumed to represent the 5th and 95th percentiles). Future work could add results 
for additional greenhouse gas scenarios and develop a more nuanced approach to 
estimating the probability distribution among different climate model projections. 

Results 
The primary purpose of this work was to produce a tool that could be used by engineers 
and planners to evaluate the implications of climate change for culvert design (Figure 1). 
To do this we calculated changes in bankfull width (BFW) for each 1/16-degree grid cell 
in Washington State, following the methodology described above. Our approach is 
intentionally designed to estimate the ratio of future to historical BFW, since catchment 
size, and the corresponding BFW, is different for each culvert. Since the WDFW “Stream 
Sim” standard requires that culverts be sized relative to the observed BFW, we ask the 
user to enter this value and use it to scale the ratios obtained from the projections. 
Specifically, the 5th percentile of the BFW ratio projections is multiplied by the observed 
BFW, and this value is then converted to a culvert dimension for each year using the 
WDFW regulatory standard (Eq. 1).  

The likelihood calculation depends on both the design lifetime of the culvert and its 
proposed size. As a result, users are also prompted to enter the design lifetime for their 
project and a proposed size for the new culvert. The likelihood of “failure” is then 
calculated by evaluating the probability that changes in BFW (after scaling, as described 
above) exceed the proposed culvert size over its design lifetime. 

The tool (Figure 1) and can be accessed via the CIG website (https://cig.uw.edu/our-
work/decision-support/culvert-phase-2/). In the first screen, users select the grid cell that 
encompasses the area of interest. This then takes the user to the second screen, where 
she can enter the observed bankfull width and design lifetime, then try out different 
proposed culvert sizes to evaluate the likelihood of failure. On this screen, the total 
probability of failure, for a particular size and design lifetime, is shown in the orange box 
in the lower-left corner of the screen. The upper plot shows the time evolution in the 
mean and range of culvert size projections, scaled to match the current bankfull width 
measurement that was entered by the user. The bottom plot shows the probability of 
failure for each year, given a particular design lifetime and proposed culvert size.  
Figure 1 shows screen shots of both the first and second screen, using results for the 
grid cell closest to Stehekin, WA as an example.  
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Conclusions 
This report describes a new tool that is designed to support climate-robust culvert design. 
The tool incorporates a new approach that estimates the probability of culvert failure over 
a given design lifetime, defining “failure” to mean that a culvert no longer meets the state’s 
design criteria. Covering all of Washington State, users are prompted to select a location 
of interest, enter their measurement of BFW and desired design lifetime, then test out 
different culvert sizes and obtain the likelihood of failure for each. 

In addition to the tool, the report describes an evaluation of the meteorological and 
streamflow datasets that are the basis for the tool, with the goal of supporting the use and 
interpretation of the results. We compared available historical climate and streamflow 
datasets against independent observations in the vicinity of the Skagit basin. Although 
we only evaluated a few sites, the comparisons show that the primary dataset used in this 
study performs as well as or better than other currently-available datasets.  

Our approach minimizes the effect of model biases by focusing on the relative changes 
in projected streamflow, evaluated in terms of the ratio of future to historical BFW. The 
approach is also an improvement over past studies in that it provides a specific estimate 
of the probability of failure over the design lifespan, integrating the range of model 
projections into a single number summarizing the implications for a particular culvert size 
and location. The tool is flexible and designed to facilitate quick evaluations in support of 
climate-resilient culvert design. 
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