Challenges of aquatic invasive species and implications to upper Skagit reservoir fisheries under changing climatic conditions

JEFF FISHER, SEATTLE CITY LIGHT

Processes likely to be influenced by climate change

Directional change in habitat characteristic

Winter flood magnitude
Winter temperature

Incubation

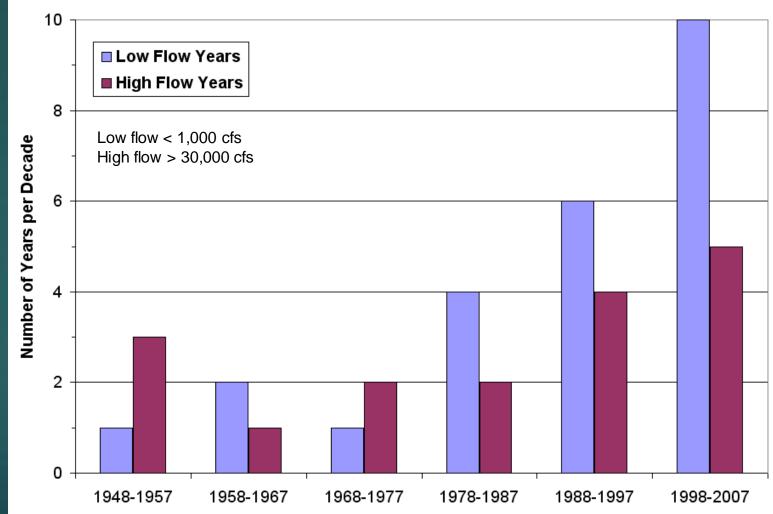
Freshwater rearing Summer flow

Estuary rearing

Rearing temperature
Sea level

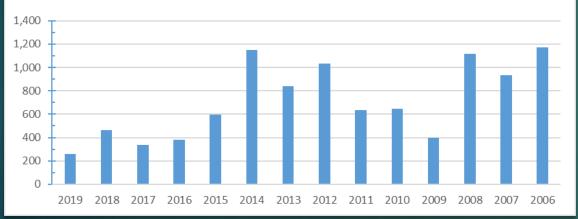
Nearshore/ ocean rearing ↑ Rearing temperature ↓ Prey availability ↑ Winter temperature Predicted population effect

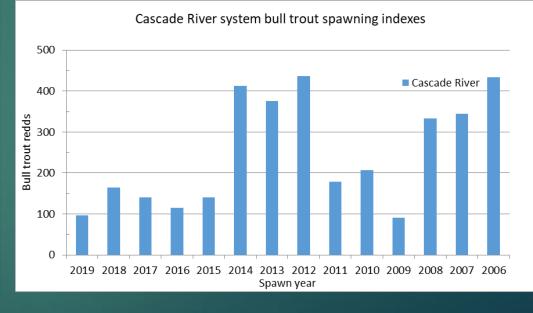
↑Egg mortality ↓Emergence time


Rearing area
Juvenile mortality
Growth rate
Juv./adult mortality

↓Residence time ↓Rearing area

↓Growth rate
 ↓Growth rate
 ↓Juvenile mortality

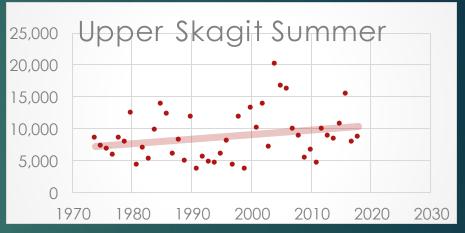

Sauk River High and Low Flow Frequencies: 1948-2


007

Recent returns indicate region-wide downward trends in spawning stocks, with some exceptions...

North Puget Sound bull trout redds 2019-2006 from all Skagit, Stillaguamish, and Snohomish bull trout spawning indexes

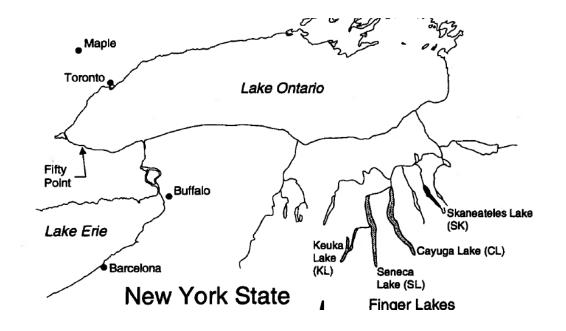
Source: A. Fowler, WDFW


Chinook trends data--PFMC

Skagit Tributary/Reach Chinook Escapement

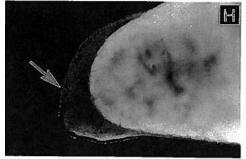
	Upper	Suiattle	Upper Sauk	Upper	Lower	Lower	Skaait	Skagit Summer/Fall	Percent Upper
Year	Cascade Spring	Trib. Spring		Skagit Summer	Skagit Summer	Sauk	Skagit SpringTotal		Percent Upper Skagit
1994	173	167	130	4,565	884	100	470	5,549	82.3
1995	225	440	190	5,948	666	263	855	6,877	86.5
1996	208	435	408	7,989	1,521	1,103	1,051	10,613	75.3
1997	308	428	305	4,168	409	295	1,041	4,872	85.6
1998	323	473	290	11,761	2,388	460	1,086	14,609	80.5
1999	83	208	180	3,586	1,043	295	471	4,924	72.8
2000	273	360	388	13,092	3,262	576	1,021	16,930	77.3
2001	625	688	543	10,084	2,606	1,103	1,856	13,793	73.1
2002	340	265	460	13,815	4,866	910	1,065	19,591	70.5
2003	298	353	193	7,123	1,161	1,493	844	9,777	72.9
2004	380	495	700	20,040	3,070	443	1,575	23,553	85.1
2005	420	518	308	16,608	3,320	875	1,246	20,803	79.8
2006	478	375	1,043	16,125	3,508	1,095	1,896	20,728	77.8
2007	223	108	282	9,845	1,053	383	613	11,281	87.3
2008	284	203	983	8,841	2,685	538	1,470	12,064	73.3
2009	338	273	367	5,290	1,439	250	978	6,979	75.8
2010	330	263	768	6,644	1,017	356	1,361	8,017	82.9
2011	265	215	345	4,480	820	237	825	5,537	80.9
2012	488	460	1,826	9,808	3,295	715	2,774	13,818	71.0
2013	310	620	1,080	8,801	1,551	530	2,010	10,882	80.9
2014	225	460	923	8,308	1,785	364	1,608	10,457	79.4
2015	188	478	743	10,705	2,203	406	1,409	13,314	80.4
2016	295	648	1502	15,406	2,840	1044	2,445	19,290	79.9
2017	323	898	1630	7,792	3,786	1001	2,851	12,579	61.9
2018	128	645	1603	8,602	1,923	378	2,376	10,903	78.9

	Pink	Chum	Chinook	Coho	Sockeye	Steelhead	Bull trout	Cutthroat
Spawning								
↑ Migration temp			Low er riv er		low tolerance	↓summer run	low tolerance	
↓ Flow	∆ in redd depth		∆ in redd depth		∆ in redd depth	↓ summer run		
Incubation								
↑ Temp						summer run	low tolerance	
↑ Floods	scouring	scouring	scouring	scouring	scouring		scouring	
FW rearing								
↑ Temp			cold w ater	floodplains	lake rearing	tributaries	cold water	
↓ Summer flow			cold w ater	floodplains	lake rearing	tributaries	cold water	↓ habitat
Estuary rearing								
↑ Temp			↓ residence					↓ habitat
↑ Sealevel		↓ habitat	↓ habitat					
Nearshore rearing								
↑ Temp	↓ habitat	↓ habitat	↓ habitat				low tolerance	
↑ Sealevel	shoreline habitat	shoreline habitat	shoreline habit at					
↓pH	plankton feeding	foodw eb	foodw eb	foodw eb	plankton feeding	foodw eb	foodw eb	foodw eb
Ocean rearing								
↑ Temp	summer habitat	summer habitat	summer habitat	summer habitat	summer habitat	summer habitat		
↓pH	plankton feeding	foodw eb	foodw eb	foodw eb	plankton feeding	foodw eb		


Climate change threats for Skagit salmonid species

What's missing from the list of potential climate change effects?

Invasive Species



Lessons to be learned from other systems: Atlantic salmon early mortality syndrome study area

Typical gross lesions in Atlantic salmon alevins from Cayuga Lake spawn

L. Clear Pond Cayuga Lake

<u>1 cm</u>

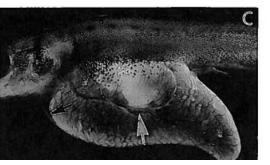
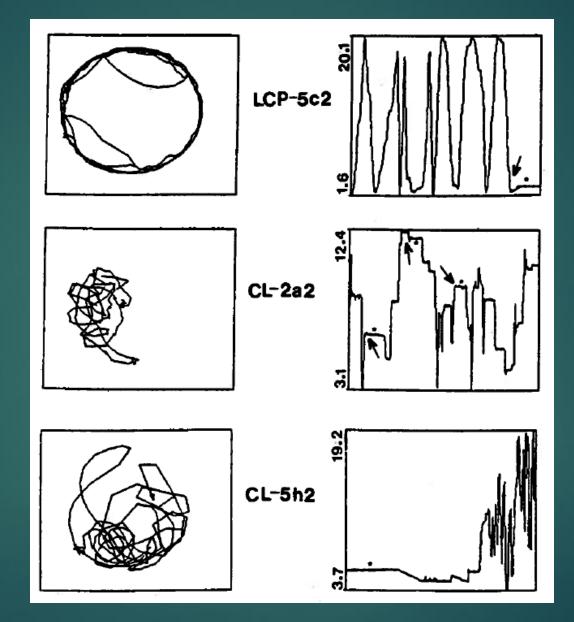
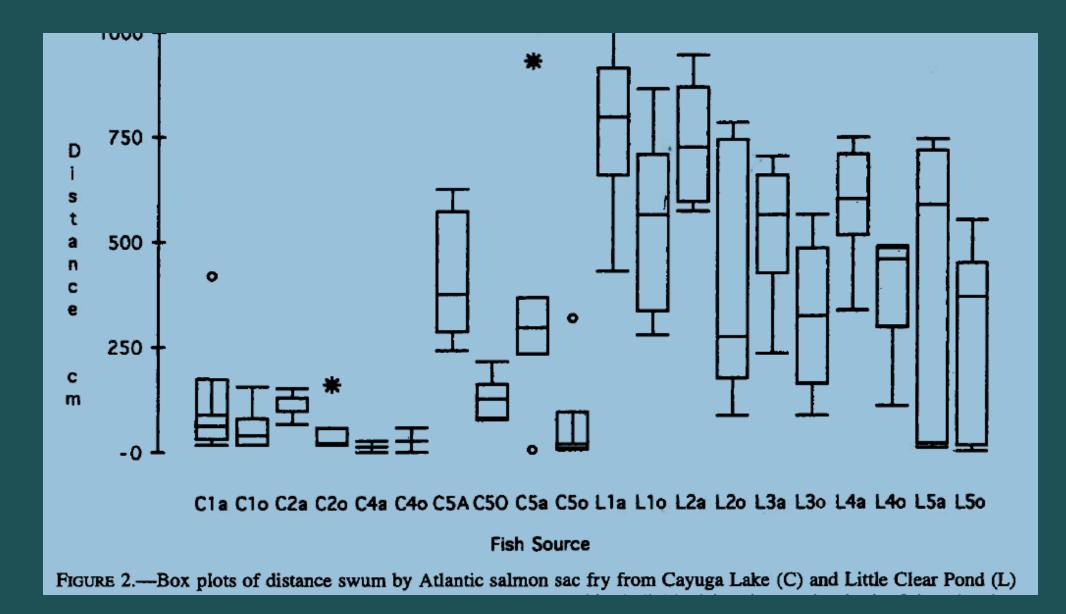




TABLE 1.—Gross lesion frequency in landlocked Atlantic salmon sac fry from Little Clear Pond (LCP), and syndromeafflicted Cayuga Lake (CL) and Keuka Lake (KL). Results designated by female number (if cultured separately) are followed by year-class. Blank cells indicate that lesion frequency was not recorded. Standard errors are in parentheses.

Lesion					Female n	umber				
or stage	LCP 90 ^a	LCP 92b	CL 1-90°	CL 1-91	CL 1-92	CL 2-92	CL 3-92	CL 4-92	CL 5-92	KL 1-92
		Lesion frequ	uency (numb	er of sacfr	y with lesion	ns/number	examined	or percent)	
YSOd	2/40	0.0 (0)	32/40	9/18	15/22	19/21	22/22	20/20	21/21	19/20
SCE ^e	1/40	2.0 (2.2)	10/40	6/18	6/22	1/21	10/22	14/20	0/21	19/20
PCEf		0.0 (0)			4/22	0/21	6/22	8/20	0/21	16/20
RBE	0/40	0.0 (0)	1/40	2/18	0/22	2/21	4/22	2/20	0/21	6/20
VCHM ^h	3/40	1.4 (7.6)	3/40	6/18	7/22	7/21	9/22	8/20	1/21	13/20
BCHM ⁱ	0/40	0.0 (0)	4/40	6/18	7/22	3/21	8/22	5/20	0/21	11/20
HCj	0/40	0.0 (0)	0/40	1/18	0/22	0/21	0/22	0/20	0/21	3/20
FM ^k	0/40	0.0 (0)	0/40	0/18	0/22	0/21	1/22	1/20	0/21	5/20
CC-CD1	0/40	0.0 (0)	1/40	1/18	7/22	0/21	4/22	15/20	0/21	12/20
SC ^m	1/40	0.0 (0)	0/40	0/18	0/22	1/21	0/22	0/20	0/21	0/20
			Developr	nent reach	ed (centigra	de degree-	days)			
DDays ⁿ	805, 834	678	750, 779	682	678	765	670	625	775	638
TTDO ^o	P	P	728 (11)	666	629 (24)	661	612	542 (0)	657 (35)	671 (12)
TTDC9	P	Р	818 (11)	738	691 (6)	765	670	641 (0)	821 (0)	696 (0)

Typical stimulusprovoked swimming behavior in control (LCP) Atlantic salmon alevins and syndromeaffected alevins

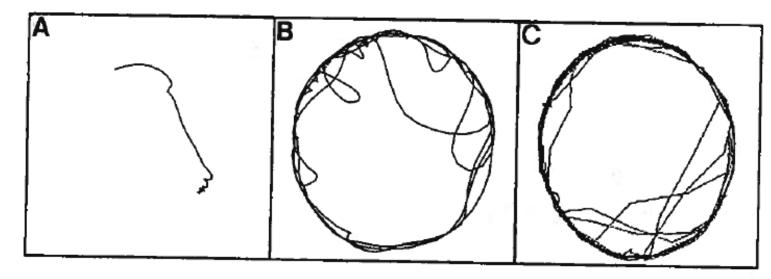
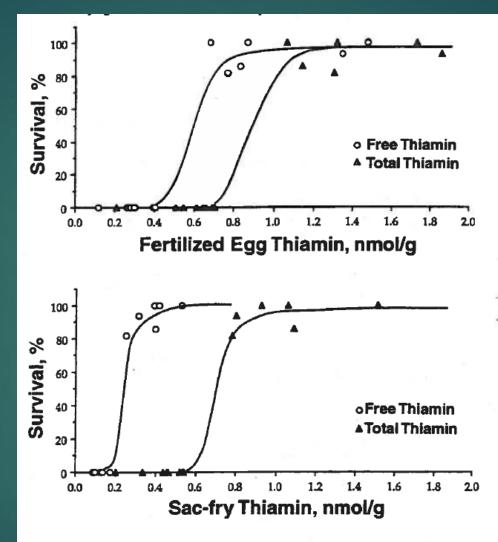



FIGURE 3.—Digitized swimming patterns of single Atlantic salmon sac fry from the control Little Clear Pond C) stock and from the syndrome-afflicted Cayuga Lake (CL) stock before and after thiamine bath treatment. awings indicate (A) representative syndrome-afflicted CL Atlantic salmon sac fry before thiamine bath treatment;) swimming pattern of the same CL sac fry 48 b often thismine bath treatment;

FIGURE 3 Interpolated best-fit curves of survival of landlocked Atlantic salmon through first feeding versus egg and sac-fry concentrations of free and total thiamine.

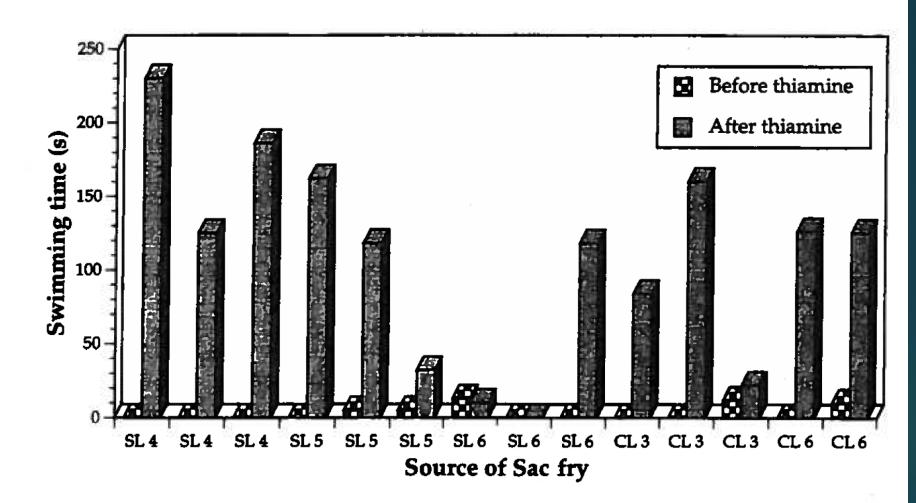


FIGURE 4.—Effect of a 1-h, 1% thiamine bath on the light-induced swimming behavior of Atlan ry afflicted with the Cayuga syndrome. Each three-dimensional bar represents the swimming time of fflicted sac fry during a 4-min observation before and 48 h after thiamine treatment. The source of

Factors Limiting Native Fishes Above Skagit River Mainstem Dams

6

USGS, Western Fisheries Research Center <u>Goal</u>: Identify and quantify factors limiting production of adfluvial salmonids that populate the reservoirs and associated tributaries

OBJECTIVES:

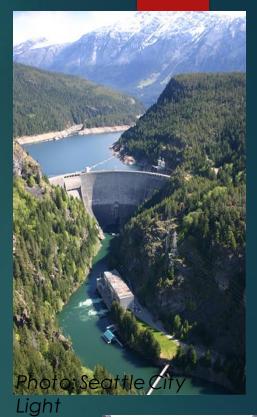
- Reservoir & Tributary Food Web Interactions
- Redside Bioenergetics

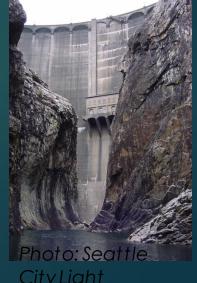
Diciolo Keservolis

- Geochemical Identification of Natal Tributaries
- Tributary Habitat Spawning & Rearing Capacity
- Distribution of Native & non-native Salmonids in Tributaries to Ross &

Hybridization with Native Salmonids

Upper Skagit reservoirs


- Energy 20% of Seattle's electricity
- FERC relicense and concern over native populations?



Invasive redside shiner

Temperature? Prey availability? Predation? Competition?

Brook trout

Credit: NPS

Redside shiner

Credit: Utah DWR

Quantifying food web interactions

Rainbow trout -

Rainbow trout -

(-) Competition?

predators

Benth

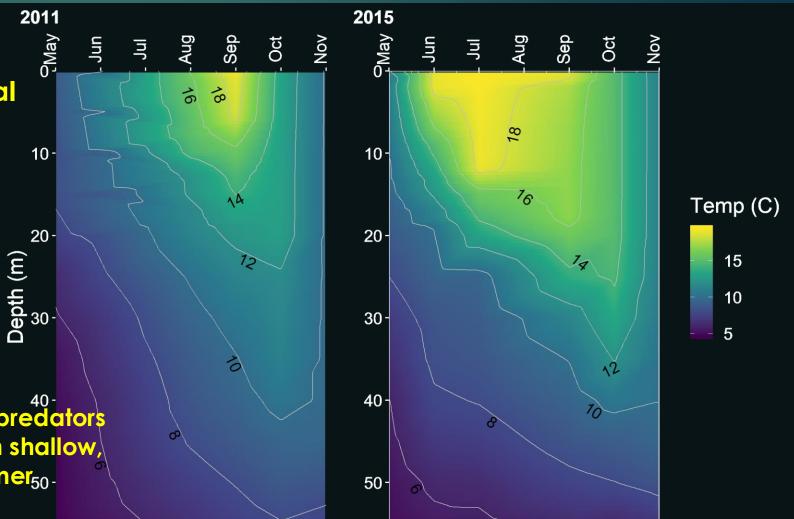
bull trout/ Dolly

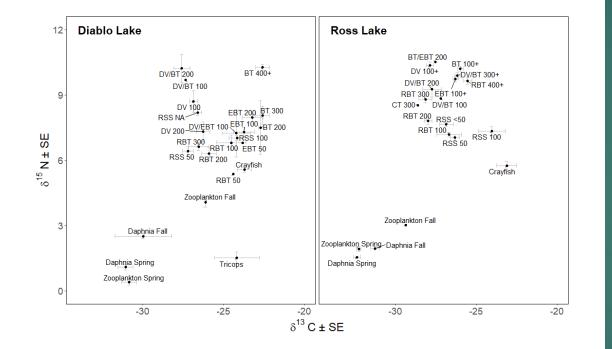
www.roughfish.com TOD

Varden

Credit: NPS

juvenile


Thermal structure of Ross Lake


Thermal structure influences spatial overlap and trophic interactions among species

-Invasive Redside shiners have Higher thermal tolerance & optimal temperatures for growth than native salmonids

Warmer climates:

-increase segregation of shiners from predators -reduce access of juv. Salmonids from shallow, high-density zooplankton during summer₅₀.

Food web structure: stable isotopes

Bull trout Rainbow trout -

Native char hybrids <u>Top</u> predators

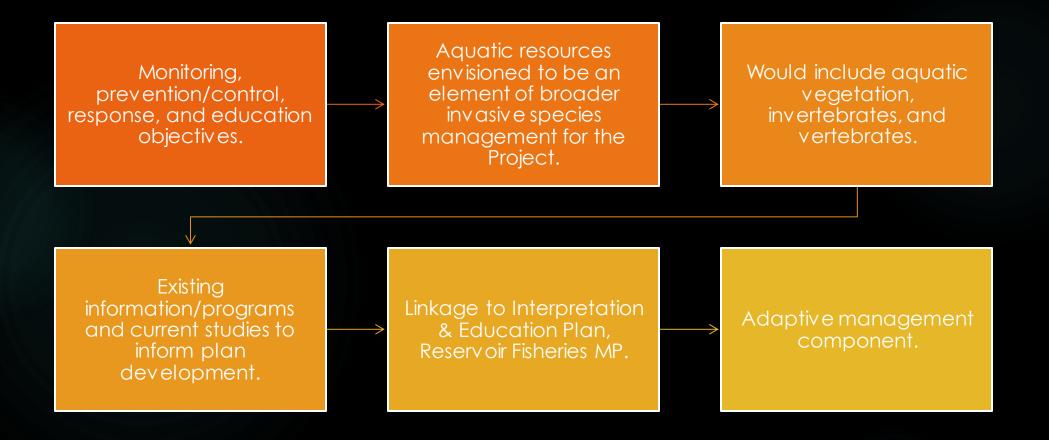
Redside shiner

Rainbow trout juvenile

Predation quantified How many fish?

At a mean prey size of 70 mm (3.5 g)...

	Prey	species
Predator	RSS	Unid. Fish
DV	880	5,303
EBT	61,307	26,477
Hybrids	208,730	142,201
BT	233,574	203,287
RBT	383,196	246,802
Total	887,687	624,070*


*If just 1% of these unidentified fish were salmonids, that would mean annual predation mortality of approx. 6,240 fish

Next steps

- More robust diet data
 - Stable isotope mixing models
- Estimating redside shiner population densities
 - Hydroacoustic surveys
- Resource competition: quantifying redside shiner consumption
 - Parameterizing a bioenergetics model (in progress)

Aquatic Invasive Species Mngt Plan

LOTS OF GUIDANCE AND POLICY OUT THERE SAY 'HOW' AND SET CRITERIA...

- CBD Art. 8(h)--"prevent the introduction of, control or eradicate those alien species which threaten ecosystems, habitats or species."
- IMO-Ballast Water Convention--First standards developed to replace first volunt place for ballast water: 10 orgs/ml

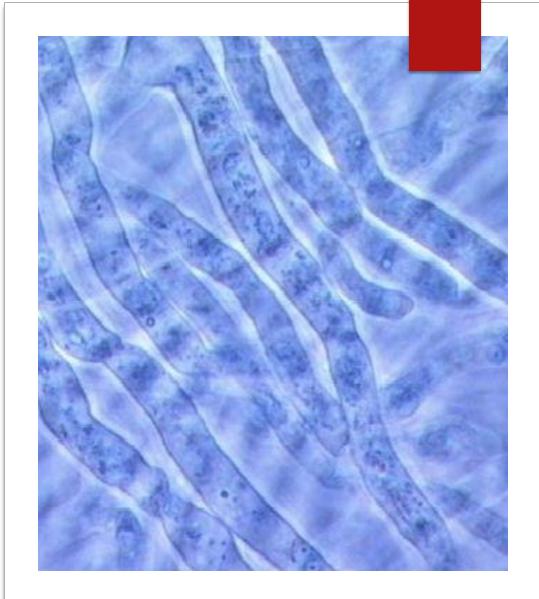
Import Risk Analysis ³ (>50 um)

Seattle City Light

SOP NAME:	Prevention of Aquatic Ir	wasive Species Introduction
SOP NUMBER:	SOP I-1005	
EFFECTIVE:	11/4/2019	Supersedes: N/A
APPROVED BY:	Lynn Bet	

1.0 **PURPOSE:**

This Standard Operating Procedure (SOP) for the Prevention of Aquatic Invasive Species Introduction assures Seattle City Light (City Light) and its contractors are compliance with all state and federal rulu and regulations regarding aquatic invasive species (AIS) in Washington and reduces the risk of such species being introduced into City Light project watersheds. This risk is increasing over time as established populations are spreading, facilitated by human population growth and climate change.


for Animals and Animal Products • OIE Volume 1 2nd Edition, 2010 Introduction and qualitative risk analysis ANSTF Real Blance - Classe - St Classe - St Classe Trinational Risk Assessment Guidelines for Aquatic Alien Invasive Species

ballast (

<section-header><section-header><section-header><section-header><section-header>

Crayfish Plague

- Crayfish Plague causative agent is oomycete Aphanomyces astaci – type of water mould – 5 Genotypes
- Clinical signs behavioural changes-scratching & day-time activity, melanisation
- Survives outside host water, mud, damp clothes, fur, equipment/gear – up to 21 days
- Fatal disease for White-clawed Crayfish with up to 100% mortality in populations

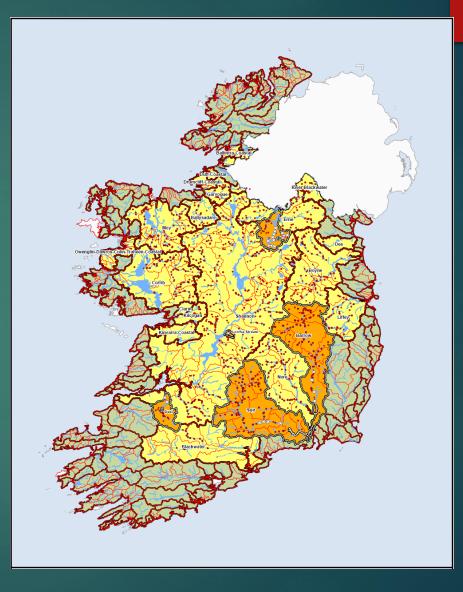
Potential pathway

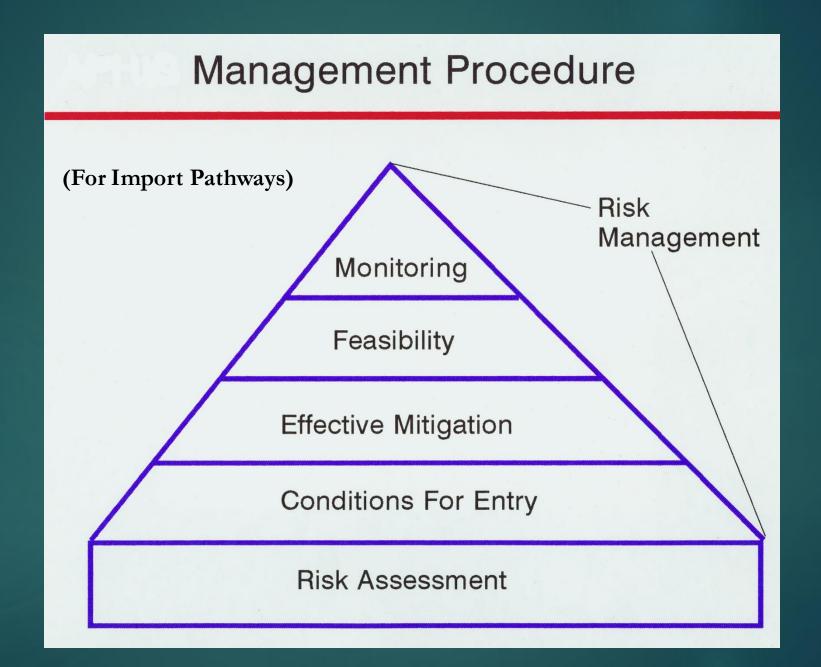
- Carrier species Signal crayfish/Red swamp crayfish, Otters, other Wildlife species
- Movement Stocked fisheries, Ornamental & Pet trade
- Possible transfer via water and mud on damp clothes, footwear, bike tyres, fishing or boating equipment or any machinery
- Human activities Water sports & recreational activities such as angling, kayaking, dog walking

ONE POSSIBLE MANAGEMENT ACTION WHEN RISKS ARE CONSIDERED TOO HIGH ...

(A.K.A. WHAT *REALLY* HAPPENED TO NEM0)

Acknowledgements


- Ed Connor, Seattle City Light (retired)
- Rachelle (Shelley) Johnson, USGS
- Dave Beauchamp, USGS
- Alan Fowler, WDFW
- ► NPS--NOCA


Climate Adaptation and Instream Flows

- SCL reservoirs currently reduce peak flows by average of 17% in lower Skagit
- Reservoirs have limited additional capacity to offset increased peak flows caused by climate change (55% of Skagit Basin is unregulated)
- SCL reservoirs currently increase minimum annual flows by 36% on average
- Fish management flows provide protections from low flow events down to Skagit estuary
- Flow augmentation of 1,650 cfs by SCL reservoirs will become more important under future low flows

Recent Outbreaks

- 2015 Bruskey, Co. Cavan
- ▶ 2017 -
 - ▶ River Suir, Co. Tipperary
 - ▶ River Deel, Co. Limerick
 - ► Lorrha River, Co. Tipperary
 - ▶ River Barrow, Co. Waterford
 - Suspected cases Negative for Crayfish plague; No further mortality reported.

