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Motivation

* The Stillaguamish River is subject to a temperature TMDL

* The Stillaguamish Tribe of Indians are concerned about how
climate warming will further jeopardize salmon habitat (Chinook)
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Stillaguamish Watershed

Puget Sound Region Watersheds
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NW Washington State

Figure from Mauger et al, 2015 / Hamlet et al., 2013

About 1700 km?, with relief ranging from sea level to about 2,050
m [6800 ft], heavily forested, historically logged. About 20% of the
basin > 1000 m.
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We simulate hydrology and stream temperatures using numerical models and
gridded meteorological data
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Gridded Meteorological Forcings

Historical modeling used met inputs from Livneh et al. (2013)

Projected scenarios were based on statistically downscaled global climate models
(MACA) produce by Abatzoglou and Brown (2012)

Stillaguamish Watershed

Daily Data 3-hr DHSVM Met Inputs
Max temperature Processed and Temperature

Min temperature disaggregated Precipitation
Precipitation Wind speed

Wind speed Humidity

Shortwave radiation
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v nodes used in the modeling



The Distributed Hydrology Soil Vegetation Model (DHSVM) was used to
simulate hydrology in the basin.

Spatially distributed, physically-based model that
explicitly represents the effects of local climate,
topography, soil, and vegetation on snow
accumulation and melt along with overland and
subsurface hydrological processes within watersheds.

Pacific
Northwest Wigmosta et al., 1994 & 2002

NATIONAL LABORATORY

https://www.pnnl.gov/projects/distributed-hydrology-soil-vegetation-model
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DHSVM Spatial Inputs

Raster-Grid-Based Stillaguamish Watershed

Spatial Inputs (50 m grid cells)
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DHSVM Model Calibration

Adjust model parameters (temperature lapse rates, rain and
snow temperature thresholds, soil conductivities and
porosities, etc.) to achieve reasonable simulated streamflow

comparable to observed streamflow.

North Fork Water years 2003-2012

All data May — September only
Daily mean Monthly mean Daily mean Monthly mean
NSE 0.813 0.88 |1 0.547 0.634 | A
R? 0.842 0.905 0.649 0.731
RSR 0.431 0.346 0.673 0.604
PBIAS 3.947 3.967 1.029 1.032
South Fork Water years 2004 to 2009
All data May — September only
Daily mean Monthly mean Daily mean Monthly mean
NSE 0.464 0.854 [0.618 0.807 |
R2 0477 0.895 0.686 0.945
RSR 0.732 0.378 0.617 0.43
PBIAS -13.4 -13.3 -24.1 -24.1

NSE = Nash—Sutcliffe model efficiency coefficient

Stillaguamish Watershed




Use the calibrated DHSVM to simulate inputs required for the RBM

Streamflow, energy,
DHSVM & meteorology at _ RBM
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RBM - River Basin Model

Stream temperature model RBM
- Yearsley (2009, 2012)

heat particle
Hcond exchange air- tracking
water surface

RBM

—
Temperature Model

l

_ About 2500 stream segments in the two forks.

Sun Ning, J Yearsley, N Voisin, DP Lettenmaier. 2015. “A spatially distributed model for the assessment of land
use impacts on stream temperature in small urban watersheds.” Hydrological Processes 29 (10): 2331-2345
DOI: 10.1002/hyp.10363



RBM Model Calibration

Calibration of the RBM requires the manipulation of eleven
variables until the simulated stream temperatures match

observed stream temperatures within statistical thresholds. Stillaguamish Watershed

NF Ecology gauge water years 2005-2012
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Climate Projections

Comparison with
CMIP5 models, RCP scenarios emulated CMIP3 RCP

5 — Historical (42)
{ — RCP26(26)
RCP 4.5 (32)
RCP 6.0 (17)
— RCP 8.5(30)

Global surface warming (°C)
N

1900 1950 2000 2050 2100 From Knutti and Sedlacek, 2013
Year

CMIP5 — Coupled Model Intercomparison Project Phase 5, March 2013 includes 20 Climate
Modeling groups from around the world.

GCM - global climate model

RCP — Representative Concentration Pathways (future greenhouse gas emission narrative )
* RCP 4.5 — moderate emission narrative

e RCP 8.5 —severe emission narrative


http://cmip-pcmdi.llnl.gov/cmip5/

Projected Climate Data

Model Center Projected scenarios were based on statistically
BCC-CSM1-1-M Beijing Climate Center, China Meteorological Administration downscaled GCMs produce by Abatzoglou and
CanESM2 Canadian Centre for Climate Modeling and Analysis Brown (2012; MACA)

CcCcsSM4 National Center of Atmospheric Research, USA T —

CNRM-CM5 National Centre of Meteorological Research, France

CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organization/
Queensland Climate Change Centre of Excellence, Australia

HadGEM2-ES Met Office Hadley Center, UK

HadGEM2-CC Met Office Hadley Center, UK

IPSL-CM5A-MR Institut Pierre Simon Laplace, France

MICROCS5 Atmosphere and Ocean Research Institute (The University of

Tokyo), National Institute for Environmental Studies, and Japan
Agency for Marine-Earth Science and Technology
NorESM1-M Norwegian Climate Center
\

median

Based in Rupp et al. (2013) we used 10 GCMs each with a
RCP4.5 and 8.5 scenarios

3-hr DHSVM Met Inputs
Temperature

Precipitation

Wind speed
Humidity
Shortwave radiation
Longwave radiation

% nodes used in the modeling



Data Analysis

Climate data are analyzed in 30-year climate normals to account
for natural variance in climate systems
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Projected changes in hydrology

Each point on the plots represents a daily average over 30 years

— Hindcast (1981-2011) — Median of 10 GCMs with RCP 4.5 scenario
~— Individual GCM (20 total) — Median of 10 GCMs with RCP 8.5 scenario
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Projected changes in stream temperature

Each point on the plots represents a daily average over 30 years

— Hindcast (1981-2011) — Median of 10 GCMs with RCP 4.5 scenario
~— Individual GCM (20 total) — Median of 10 GCMs with RCP 8.5 scenario
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Modeled monthly median stream temperature for the median GCM results
for 30-years surrounding 2025, 2050, 2075, and the historic (hindcast) period.

Month Historic | RCP4.5 RCP8S5 [RCP45 RCP85 |RCP45 RCPS8.S
°C 2025 2050 2075
January 42 44 4.5 4.7 5.0 5.0 5.8
February 4.8 5.0 4.9 53 54 5.6 6.3
March 5.5 58 5.8 6.2 6.2 6.7 7.2
April 6.8 7.4 73 7.7 7.8 8.1 8.6
May 8.1 8.7 8.9 9.5 9.8 10.6 11.8
June 94 11.7 11.7 133 13.8 14.6 15.8
July 13.8 15.4 15.5 16.6 17.0 17.4 18.4
August 15.2 16.2 16.2 16.9 17.2 17.4 18.3
September | 13.7 14.5 14.5 15.3 15.6 15.7 16.7
October 10.1 11.1 11.3 12.1 12.5 12.5 13.8
November | 6.1 6.7 6.8 7.2 7.6 7.7 8.6
December | 4.4 4.7 4.9 5.2 5.6 5.5 6.4
Month Historic | RCP4.5 RCP85 |RCP45 RCP85 | RCP4.5 RCP8.5
°C 2025 2050 2075
January 3.3 34 34 3.6 3.7 3.8 4.4
February | 3.8 4.0 3.9 4.3 4.4 4.6 5.5
March 4.5 4.7 4.9 5.3 5.4 5.9 6.7
April 6.1 6.9 6.9 7.3 7.5 7.9 9.1
May 8.2 9.1 9.2 10.0 10.5 11.0 13.1
June 101 12.0 12.2 13.8 14.6 14.9 16.5
July 14.1 16.0 16.2 16.8 17.2 17.3 18.1
August 15.3 159 16.0 16.3 16.5 16.6 17.1
September | 13.0 13.8 13.8 14.3 14.6 14.6 15.2
October 8.9 9.7 10.0 10.6 11.2 111 12.3
November | 4.4 4.9 5.0 5.5 6.0 6.0 7.0
December | 3.1 34 3.5 3.8 3.9 4.0 4.7

Stillaguamish Watershed




Stream Temperature Impact on Salmon

WA Department of Ecology Standards:

“7-DADMax” = Seven-day average of the daily maximum temperatures

16.0°C - Core Summer Salmonid Habitat Standard
17.5 °C - Lethality to developing salmon embryos can be expected
>22.0 °C — Adult lethality

Adult salmonid lethality



Stream Temperature Impact on Salmon

Stillaguamish Watershed

Average days per year exceeding the 16°C threshold:

(Emission Scenario _____Historic_2025 2050 2075 |
58 79 95

Moderate (RCP 4.5) 32
Severe (RCP 8.5) 32 59 88 117
Most Severe (HadGEM2-ES, RCP 8.5) 32 68 97 136

Average days per year exceeding the 16°C threshold:

[Emission Scenario | Historic_ 2025|2050 _|2075
Moderate (RCP 4.5) 40 e 74 85
Severe (RCP 8.5) 40 60 83 110

Most Severe (HadGEM2-ES, RCP 8.5) 40 65 20 124




Summary

Observations

Decrease in basin-wide SWE

Shift of peak SWE to earlier
in the winter

Increase in winter flow

Decrease in spring freshet

Decrease in summer flow

Increase in stream
temperatures in every
month

Greatest stream
temperature increases in
June

Highest stream
temperatures in July/August

Inferences

Warmer winter air temperatures result in more precipitation
falling as rain rather than snow

Warming air temperatures causes the snowpack to melt earlier

More precipitation falling as rain results in a more rapid runoff
to streams (loss of snowpack buffer)

A smaller snowpack produces a smaller freshet

A smaller freshet and projected warmer drier summers
produce lower steamflows

Warmer air temperature transfers more heat to streams

Loss of cool meltwater from the reduced freshet

Warmer air temperature transfers more heat to streams with a
lower discharge.



