The effects of projected climate change on stream temperatures in the Stillaguamish River

Bob Mitchell

South Fork of the Stillaguamish – Lake 22 trail

Collaborators

MS Students

Kyra Freeman

Katherine Clarke

Affiliates

John Yearsley, University of Washington, Civil and Environmental Engineering Kip Killebrew, Fisheries Biologist, Stillaguamish Tribe of Indians, Natural Resources Department

Research Sponsors

Freeman, Kyra, "Modeling the Effects of Climate Variability on Hydrology and Stream Temperatures in the North Fork of the Stillaguamish River" (2019). WWU Graduate School Collection. 855. <u>https://cedar.wwu.edu/wwuet/855</u>

Clarke, Katherine, "Modeling the effects of climate change on streamflow and stream temperature in the South Fork of the Stillaguamish River" (2020). WWU Graduate School Collection. 983. <u>https://cedar.wwu.edu/wwuet/983</u>

Motivation

- The Stillaguamish River is subject to a temperature TMDL
- The Stillaguamish Tribe of Indians are concerned about how climate warming will further jeopardize salmon habitat (Chinook)

Modified from Campbell et al., 2014

NW Washington State Figure from Mauger et al, 2015 / Hamlet et al., 2013

About 1700 km², with relief ranging from sea level to about 2,050 m [6800 ft], heavily forested, historically logged. About 20% of the basin > 1000 m.

Stillaguamish Watershed NF Ecology Gauge ANF USGS Gauge SF Ecology Gauge NF USGS Gauge NF Ecology Gauge SF Ecology Gauge

Freeman, Kyra, "Modeling the Effects of Climate Variability on Hydrology and Stream Temperatures in the **North Fork** of the Stillaguamish River" (2019). WWU Graduate School Collection. 855. https://cedar.wwu.edu/wwuet/855

Stillaguamish River Basin

Kilometers

10

20

5

North Fork Basin South Fork Basin

Clarke, Katherine, "Modeling the effects of climate change on streamflow and stream temperature in the **South Fork** of the Stillaguamish River" (2020). WWU Graduate School Collection. 983. https://cedar.wwu.edu/wwuet/983

We simulate **hydrology** and **stream temperatures** using numerical models and gridded meteorological data

Gridded Meteorological Forcings

Historical modeling used met inputs from Livneh et al. (2013)

Projected scenarios were based on statistically downscaled global climate models (MACA) produce by Abatzoglou and Brown (2012)

The Distributed Hydrology Soil Vegetation Model (**DHSVM**) was used to simulate hydrology in the basin.

Spatially distributed, physically-based model that explicitly represents the effects of local climate, topography, soil, and vegetation on snow accumulation and melt along with overland and subsurface hydrological processes within watersheds.

https://www.pnnl.gov/projects/distributed-hydrology-soil-vegetation-model

DHSVM Spatial Inputs

Raster-Grid-Based Stillaguamish Watershed

DHSVM Model Calibration

Adjust model parameters (temperature lapse rates, rain and snow temperature thresholds, soil conductivities and porosities, etc.) to achieve reasonable simulated streamflow comparable to observed streamflow.

Stillaguamish Watershed

North Fork Water years 2003-2012

	All data		May – September only		
	Daily mean	Monthly mean	Daily mean	Monthly mean	
NSE	0.813	0.88	0.547	0.634	
\mathbb{R}^2	0.842	0.905	0.649	0.731	
RSR	0.431	0.346	0.673	0.604	
PBIAS	3.947	3.967	1.029	1.032	

Monthly mean

NSE = Nash–Sutcliffe model efficiency	coefficient

Daily mean

0.464

0.477

0.732

-13.4

NSE

RSR

PBIAS

 \mathbb{R}^2

All data

0.854

0.895

0.378

-13.3

Use the calibrated DHSVM to simulate inputs required for the RBM

RBM – River Basin Model

Sun Ning, J Yearsley, N Voisin, DP Lettenmaier. 2015. "A spatially distributed model for the assessment of land use impacts on stream temperature in small urban watersheds." Hydrological Processes 29 (10): 2331–2345 DOI: 10.1002/hyp.10363

RBM Model Calibration

Calibration of the RBM requires the manipulation of eleven variables until the simulated stream temperatures match observed stream temperatures within statistical thresholds.

SF Ecology gauge water years 2005-2009

Stillaguamish Watershed

Climate Projections

CMIP5 – <u>Coupled Model Intercomparison Project Phase 5</u>, March 2013 includes 20 Climate Modeling groups from around the world.

GCM – global climate model

RCP - Representative Concentration Pathways (future greenhouse gas emission narrative)

- RCP 4.5 moderate emission narrative
- RCP 8.5 severe emission narrative

Projected Climate Data

Model	Center
BCC-CSM1-1-M	Beijing Climate Center, China Meteorological Administration
CanESM2	Canadian Centre for Climate Modeling and Analysis
CCSM4	National Center of Atmospheric Research, USA
CNRM-CM5	National Centre of Meteorological Research, France
CSIRO-Mk3-6-0	Commonwealth Scientific and Industrial Research Organization/ Queensland Climate Change Centre of Excellence, Australia
HadGEM2-ES	Met Office Hadley Center, UK
HadGEM2-CC	Met Office Hadley Center, UK
IPSL-CM5A-MR	Institut Pierre Simon Laplace, France
MICROC5	Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology
NorESM1-M	Norwegian Climate Center

Projected scenarios were based on statistically downscaled GCMs produce by Abatzoglou and Brown (2012; MACA)

Global Climate Model Air Temperature

★ nodes used in the modeling

median

Based in Rupp et al. (2013) we used 10 GCMs each with a RCP4.5 and 8.5 scenarios

3-hr DHSVM Met Inputs

Temperature Precipitation Wind speed Humidity Shortwave radiation Longwave radiation

Data Analysis

Climate data are analyzed in 30-year climate normals to account for natural variance in climate systems

Projected changes in hydrology

Each point on the plots represents a daily average over 30 years

Projected changes in stream temperature

Each point on the plots represents a daily average over 30 years

Modeled monthly median stream temperature for the median GCM results for 30-years surrounding 2025, 2050, 2075, and the historic (hindcast) period.

Mandh	Historic	RCP 4.5	RCP 8.5	RCP 4.5	RCP 8.5	RCP 4.5	RCP 8.5
Wonth	°C	2025		2050		2075	
January	4.2	4.4	4.5	4.7	5.0	5.0	5.8
February	4.8	5.0	4.9	5.3	5.4	5.6	6.3
March	5.5	5.8	5.8	6.2	6.2	6.7	7.2
April	6.8	7.4	7.3	7.7	7.8	8.1	8.6
May	8.1	8.7	8.9	9.5	9.8	10.6	11.8
June	9.4	11.7	11.7	13.3	13.8	14.6	15.8
July	13.8	15.4	15.5	16.6	17.0	17.4	18.4
August	15.2	16.2	16.2	16.9	17.2	17.4	18.3
September	13.7	14.5	14.5	15.3	15.6	15.7	16.7
October	10.1	11.1	11.3	12.1	12.5	12.5	13.8
November	6.1	6.7	6.8	7.2	7.6	7.7	8.6
December	4.4	4.7	4.9	5.2	5.6	5.5	6.4

Month	Historic	RCP 4.5	RCP 8.5	RCP 4.5	RCP 8.5	RCP 4.5	RCP 8.5
Month °C		2025		2050		2075	
January	3.3	3.4	3.4	3.6	3.7	3.8	4.4
February	3.8	4.0	3.9	4.3	4.4	4.6	5.5
March	4.5	4.7	4.9	5.3	5.4	5.9	6.7
April	6.1	6.9	6.9	7.3	7.5	7.9	9.1
May	8.2	9.1	9.2	10.0	10.5	11.0	13.1
June	10.1	12.0	12.2	13.8	14.6	14.9	16.5
July	14.1	16.0	16.2	16.8	17.2	17.3	18.1
August	15.3	15.9	16.0	16.3	16.5	16.6	17.1
September	13.0	13.8	13.8	14.3	14.6	14.6	15.2
October	8.9	9.7	10.0	10.6	11.2	11.1	12.3
November	4.4	4.9	5.0	5.5	6.0	6.0	7.0
December	3.1	3.4	3.5	3.8	3.9	4.0	4.7

Stream Temperature Impact on Salmon

WA Department of Ecology Standards:

"7-DADMax" = Seven-day average of the daily maximum temperatures

16.0°C - Core Summer Salmonid Habitat Standard

17.5 °C - Lethality to developing salmon embryos can be expected
> 22.0 °C - Adult lethality

Stream Temperature Impact on Salmon

Average days per year exceeding the 16°C threshold:

Emission Scenario	Historic	2025	2050	2075
Moderate (RCP 4.5)	32	58	79	95
Severe (RCP 8.5)	32	59	88	117
Most Severe (HadGEM2-ES, RCP 8.5)	32	68	97	136

Average days per year exceeding the 16°C threshold:

Emission Scenario	Historic	2025	2050	2075
Moderate (RCP 4.5)	40	59	74	85
Severe (RCP 8.5)	40	60	83	110
Most Severe (HadGEM2-ES, RCP 8.5)	40	65	90	124

Stillaguamish Watershed

Summary

Observations	Inferences
Decrease in basin-wide SWE	Warmer winter air temperatures result in more precipitation falling as rain rather than snow
Shift of peak SWE to earlier in the winter	Warming air temperatures causes the snowpack to melt earlier
Increase in winter flow	More precipitation falling as rain results in a more rapid runoff to streams (loss of snowpack buffer)
Decrease in spring freshet	A smaller snowpack produces a smaller freshet
Decrease in summer flow	A smaller freshet and projected warmer drier summers produce lower steamflows
Increase in stream temperatures in every month	Warmer air temperature transfers more heat to streams
Greatest stream temperature increases in June	Loss of cool meltwater from the reduced freshet
Highest stream temperatures in July/August	Warmer air temperature transfers more heat to streams with a lower discharge.