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Sediment contributions
to the lower Salish Sea

Skagit dominates, despite dams
on all but 1 major tributary

123° 122° 1210
I &5 [ |
4.040 : 4 Y
fQ‘o ! &:‘
& Y- 3
{ =
I EXPLANATION British Columbia  CANADA
N ; ; T R =
—--—Drainage-basin boundary ~ ..S\Washmgton UNITED STATEsj—
; AP
—--—Subbasin b9undary 5 :,~ e
33 Annual sedimentload, |2 s {;
in thousands of tons \%{ < <
?  Published load B RNEm A G
R estimates could notbe |\ ¢ @ \
| found or do not exist - /\ e
)
Salish Sea
- / Snlluau(mnsl Rw\et
2%
Flwhu ])ungeness J &
480 - Rl\’el \Rl"él > A
V=
Olympic Mountams lg
Blg\Omlcene River, *5 =
]
Dosen alhps Rn erX 30 . l§
/_(Dmkubush/Rg'let /'/11) S
Hamma- 11(1”1"1((5]\({132 '
Skokﬁ;ish%ﬁ\»er :
Pacific
Ocean
47° =
[IJ 2|5 50
0 25 50 75 KILOMETERS
L a3 1 A0 |

Czuba et al. (2011)



n

121°40' 121°20' 121°00'
T T 5 T

\\\‘

Upper Suiattle: major
sed contributor to Skagit
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| 200 m of incision

in "‘5 500 years




Why the anomalously high sediment load?

Answer 1: Rapid incision into recent,
unconsolidated volcanic deposits
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Sediment budget of Sauk River (2012-2016)

Suiattle (740 + 130)*

Lower Suiattle (290)1

Upper Suiattle/Glacier¥
Peak (450)

Whitechuck (110 + 40)**

]
Lower Sauk (940 + 130) Middle Sauk (200 + 30) Upper Sauk (90 + 25)

Mean annual SSL, thousand metric tons Jaeger et al. (2017)




White Chuck + Suiattle = similar late-
Holocene geomorphic conditions

Modern Suiattle has much higher sediment




What is known:

There are big debris flows and little ones coming out of Chocolate and Dusty Creeks.
Ford (1959), Slaughter (2004), Jaeger et al. (2017)

Remaining questions:

How often do debris flows occur? Have they always happened?
What are the triggers?




Suiattle debris flows: a recent phenomenon?

Photo: Willhiteweb.com (WA Fire Lookouts)



Suiattle debris flows: a recent phenomenon?

Photo: Willhiteweb.com (WA Fire Lookouts)



HOW ma ny majOr dEbriS fIOWS? Debris flows initiated in late-1930s
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HOW ma ny majOr dEbriS fIOWS? Debris flows initiated in late-1930s

9.3 yr maximum recurrence interval

l Debris Flows Evidenced by: (inter-event time range 2 to 16 yrs)
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Minor debris flows? & USGS

2015 debris ﬂOW, and SUbsequent fall ﬂUShing noted by Jaeger (2017) Prepared in cooperation with Sauk-Suiattle Indian Tribe

Suspended Sediment, Turbidity, and Stream Water
Temperature in the Sauk River Basin, Western Washington,
Water Years 2012-16

Scientific Investigations Report 2017-5113
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Minor debris flows?

2015 debris flow, and subsequent fall flushing noted by Jaeger (2017).

- 800
;:600-
5 4001
g 200 1
g i e A N 4
2 10001 : l H
;2:? 500 i !
o
L AL .g.ﬁ_dj- ot " L
750000 1 -
500000
250000 1
O-J—rr : S _— . (Planet Imagery)
) © W\ > O Q N 0
1010,0 1010,0 ’LQ’LO,Q 107—0 Q 7’07'0’0 1010,\, 1010,\, ’LG,LQ,X
Debris Flow Signal Fall Flushing Winter Rainstorms
Independent of precip and discharge Follows debris flow event - Discharge responds to precip events
SSL does not change drastically Increased Q results in drastic jump in SSL « Minor increases in turbidity

Precip driven « (Anomalous sediment load depleted)



Debris flow identification from turbidity data
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Minor debris flows in 5 of 7
full years on record.

Multiple events a year.



Debris flow trigger?
Hot summer days

Minor debris flows:
hot summer days.

Historic accounts:
fire spotter plane.

Glacial outburst events.
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Debris flow trigger?
Hot summer days

Minor debris flows:
hot summer days.

Historic accounts:
fire spotter plane.

Glacial outburst events.
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debris flow
deposit in upper
Chocolate Creek

sand deposits
on banks and bars

~10% mean annual SSL (low SSL)

B. First rainstorms
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Abrasion: coarse volcanics disappear rapidly
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Major debris flows initiated ~1940, many events since.
Minor dfs common, preferentially on hot days (as w/major).

SSL elevated across timescales.
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