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A B S T R A C T

Accurate, and high-resolution wave statistics are critical for regional hazard mapping and planning. However,
long-term simulations at high spatial resolution are often computationally prohibitive. Here, multiple rapid
frameworks including fetch-limited, look-up-table (LUT), and linear propagation are combined and tested in
a large estuary exposed to both remotely (swell) and locally generated waves. Predictions are compared with
observations and a traditional SWAN implementation coupled to a regional hydrodynamic model. Fetch-limited
and LUT approaches both perform well where local winds dominate with errors about 10%–20% larger than
traditional SWAN predictions. Combinations of these rapid approaches with linear propagation methods where
remotely generated energy is present also perform well with errors 0%–20% larger than traditional SWAN
predictions. Model–model comparisons exhibit lower variance than comparisons to observations suggesting
that, while model implementation impacts prediction skill, model boundary conditions (winds, offshore waves)
may be a dominant source of error. Overall results suggest that with a relatively small loss in prediction
accuracy, simulations computation cost can be significantly reduced (by 2–4 orders of magnitude) allowing
for high resolution and long-term predictions to adequately define regional wave statistics.
1. Introduction

Accurate, long-term, and high-resolution wave predictions are
eeded to assess the flood risk at the coast where rising sea levels and
hanging coastal conditions may alter wave propagation, generation,
nd extreme conditions on the shoreline (Erikson et al., 2015; Sweet

et al., 2022). Phase-averaged numerical models, e.g., Simulating WAves
earshore (SWAN, Booij et al., 1999), are the defacto approach to pre-
icting wave generation and transformation at the coast. While rapidly
mplemented when boundary forcing is available, models like SWAN
equire large amount computation for high-resolution simulation over
ong time periods. To reduce the computational cost the standard
WAN implementation may be replaced by faster reduced physics
odel (e.g., O’Reilly and Guza, 1993; Leijnse et al., 2021) or by uti-

izing a look-up-table (LUT) approach (e.g., Hegermiller et al., 2017).
By neglecting the physics of sources, sinks, and non-linear interactions,
wave energy is rapidly transformation is rapidly computed (Longuet-
Higgins, 1957; Dorrestein, 1960; Crosby et al., 2018). This reduced
physics approach is skillful where neglected terms are small, such
as locations like the U. S. West Coast where low-frequency energy
dominates. Here, the Coastal Data Information Program (CDIP, https:
//cdip.ucsd.edu/) makes operational wave predictions from buoy ob-
servations and linearly propagating wave energy to the shore (O’Reilly

∗ Corresponding author at: U.S. Geological Survey, 2885 Mission St., Santa Cruz, 95060, CA, USA.
E-mail address: sean.crosby@wwu.edu (S.C. Crosby).

and Guza, 1993; O’Reilly et al., 2016). Prior work has also shown
that along the shelf of Oregon and Washington, wind-wave generation
is small compared to remotely-generated swell (García-Medina et al.,
2013), illustrating why these rapid transformation approaches are so
successful.

In contrast, a look-up-table (LUT) is typically a suite of simula-
tions for a variety of forcing combinations with the complete model
physics. The computation reduction comes from discretizing the range
of possible forcings. This finite set of simulations is computed once
and then predictions are simply queried for a given forcing condition.
For example, in a small enclosed basin where wind conditions are
spatially homogeneous, wind speeds and directions can be binned
into discrete values covering the expected range and used as the set
of plausible forcings. Waves are modeled for finite combination of
speeds and directions forming a look-up table from which to generate
rapid predictions (Golshani, 2011; Elliott and Neill, 2015). Similar
approaches have been applied to the transformation of offshore waves
to the nearshore (Hegermiller et al., 2017), but difficulties arise when
the range of forcing conditions cannot be characterized within a man-
ageable dimension, and total number of required simulations. For
example, if local wind conditions and offshore waves are relatively
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Fig. 1. Bathymetry, observation locations, and wave model domains (Table 2) in the Salish Sea. Domain grid extents are shown in green (SWM), magenta (LSR), and yellow
(LUT) and labeled in black bold. Wave buoy locations are shown by filled red circles and bottom-mounted pressure sensors by red filled triangles (Table 1). Subsets (b) and (c)
are zoomed to SWAN domains D4 and D3, respectively. Dashed white line shows international border between Canada and the United States.
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uncorrelated the number of dissimilar forcing conditions, i.e., offshore
wave height, period, direction, wind speed, wind direction, becomes
large. Additionally, offshore waves may not be well represented by
a single set of bulk wave parameters (Kumar et al., 2017) or require
additional spectral details (Crosby et al., 2016). Increasingly sophisti-
cated statistical-modeling approaches have been developed to classify
weather patterns, and using clustering and dissimilarity algorithms to
generate a suite of possible model forcing (Camus et al., 2011, 2013);
however, such approaches may fail with novel forcing conditions.

Reduced physics and LUT approaches both provide a trade-off be-
tween accuracy and the required computation and may be more ap-
propriate in specific regions or frequencies. Here, we quantify the
trade-off between accuracy and computational cost for several model
implementations in a semi-enclosed estuary where both remotely and
locally generated waves are significant. Section 2 introduces the region
and prior wave studies are reviewed. Observations sites and data are

reviewed in Section 3.1 and the varying modeling approaches are e

2

escribed in Section 3. Model skill and comparison throughout the
egion are assessed in Section 4, including the impacts of currents on
aves in the region. Lastly, conclusions and results are summarized in
ection 5

. Regional background

The Salish Sea is a semi-protected estuary on the Washington and
ritish Columbia coast. Glacially carved, it is a system of narrow straits,

slands, sills, and basins all at varying spatial scales (Fig. 1). Exposed
artially to the NE Pacific Ocean, both locally- and remotely generated
aves are observed, with their relative impact depending on exposure.
trong currents (up to 5 m/s) in narrow tidal channels occur due to
large tidal range (3–4 m) and tidal prism (Thompson and Thomson,

994).
Waves in the Salish Sea contribute to flooding at high water levels;
rode unconsolidated shorelines, bluffs, and marshes; drive nearshore



S.C. Crosby, C.M. Nederhoff, N. VanArendonk et al. Ocean Modelling 184 (2023) 102231

s
o
u
w
u
s
d
a
t
w
a

a
t
s
b
s
2
e
n
n
s
d
a
h

3

c
t
a
2
(

Table 1
Locations and occupations of wave observations including short-term U. S. Geological Survey (USGS) bottom-
mounted pressure sensor deployments and long-term National Data Buoy Center (NDBC) and Environment
Canada (EC) directional wave buoy stations.

ID Name Lat [◦ ] Lon [◦ ] Depth [m] Occupation

NDBC buoys
46087 Neah Bay 48.493 −124.726 260 2004-Present
46088 Hein Bank 48.334 −123.165 114 2004-Present
46257 Angeles Point 48.173 −123.607 114 2020-Present
Environment Canada buoys
46146 Halibut Bank 49.240 −123.730 42 1992-Present
46131 Sentry Shoal 49.910 −124.990 14 1992-Present
U. S. Geological Survey
Spot-01 Bellingham Bay 48.742 −122.549 20 2/9/2020–1/2/2021
W1 Joseph Whidbey 48.318 −122.712 3 4/22/2019–9/4/2019
W2 Hastie Lake 48.274 −122.742 2 4/22/2019–9/4/2019
W3 Fort Ebey 48.227 −122.772 2 4/22/2019–9/4/2019
B1 Nooksack Delta 48.757 −122.551 4 12/11/2017–1/24/2018
B2 Squalicum 48.761 −122.519 3 12/11/2017–1/24/2018
B3 Post Point 48.715 −122.520 4 12/11/2017–1/24/2018
S1 Skagit Delta 48.335 −122.522 4 12/11/2017–2/9/2018
S2 Martha’s 48.372 −122.551 3 12/11/2017–2/9/2018
S3 SneeOosh 48.396 −122.543 4 12/11/2017–2/9/2018
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transport of sediments and pollutants important to shellfish, forage fish,
and salmon habitats; and affect recreational and commercial boating
activities that provide critical access to the many islands in the Puget
Sound. Accurate, high-resolution, long-term wave predictions are thus
critical to support shoreline planning, ecosystem restoration, and re-
gional navigation and transportation (Finlayson, 2006b; Yang et al.,
2019; Battalio et al., 2005; Gerstel et al., 1997)

Prior wave modeling studies, despite the region’s complexities,
how good predictive skill. Early predictions at Cama beach, located
n Camano Island (Fig. 1), showed wave conditions are well modeled
nder stationary assumptions, likely because in the enclosed region
ith relatively short fetches local wind-wave generation reaches sat-
ration rapidly (Finlayson, 2006a). A more recent regional wave study
hows good skill at three moored buoy locations in the Strait of Juan
e Fuca (SJF) and Strait of Georgia (SoG) with an unstructured grid
nd non-stationary model physics (Yang et al., 2019). The authors note
he need to downscale wind predictions from 32 to 12 km to capture
ind speeds in the region and derive a regional climatology based on
computationally costly, 5-year model simulation.

Though initial studies show predictive skill, comparison were made
t the few wave observation sites and uncertainties remain regarding
he impact of water levels and currents. Early observations suggest
trong modulation of wave heights by tidal currents in the SJF, (Lam-
rakos, 1981), but model studies are still lacking. Recent work has
hown significant impacts to waves by currents globally (Ardhuin et al.,
017; Gallet and Young, 2014) and in the Gulf Stream (Hegermiller
t al., 2019); given the magnitude of currents in the region sig-
ificant wave impacts are probable. To date, model validation of
earshore waves and their transformation and impacts across the
horeface are limited to the Cama Beach study (Finlayson, 2006a),
espite recent flood impacts associated with waves. Rapid, accurate,
nd high-resolution approaches are needed to support ongoing flood
azard risk assessment.

. Methods

Several wave modeling approaches were implemented, ranging in
omplexity from simple parameterized fetch- and depth-limited predic-
ions, to numerical coupled hydrodynamic and wave simulations and
re detailed below. In most cases waves were simulated from March
016–December 2020 where high resolution meteorological forcing
Section 3.2.1) and observations (Section 3.1) are available.
 a

3

.1. Observations

Historic wave observations in the Salish Sea are sparse. The Na-
ional Data Buoy Center (NDBC) currently maintains directional 3-m
iscus buoys located at the estuary entrance (46087) and inside the
JF (46257, 46088). Environment Canada additionally maintains two
irectional buoys in the SoG (46146 and 46131), see Fig. 1. To provide
dditional validation observations, including those close to shore, shal-
ow bottom-mounted pressure gauges were deployed in Bellingham Bay
Fig. 1b), Skagit Bay, and on the west shore of Whidbey Island (Fig. 1c)
or several months (Crosby and Grossman, 2019). Sites spanned a range
f environments, from large to small basins, and with varying exposure
o locally and remotely generated waves (Fig. 1). Wave conditions
rom pressure sensor observations were estimated following Jones and
onismith (2007).

.2. Model inputs -test

.2.1. Meteorological forcing
Winds and pressure fields were extracted from archived weather

orecasts by Environment Canada (https://weather.gc.ca/), the highest
esolution weather products freely available in the region. This High
esolution Deterministic Prediction System (HRDPS) is available at
-h temporal and at 2.5 km spatial resolution with forty-eight hour
orecasts every 6-h. Surface winds (10-m) are from the HRPDS-West
omain were extract from forecast hours 1–6 and concatenated together
o create a continuous time series of wind forcing. The zero forecast
our, or analysis, was found to be inconsistent with observations and
herefore not used. Archived forecasts from March 2016 through 2020
rovide nearly 5-years of forcing.

.2.2. Bathymetry
Model depths were derived from high resolution bathymetry avail-

ble in the region including 1-m digital elevation models (DEMs) by the
. S. Geological Survey (Tyler et al., 2020, 2021), 10-m coastal DEM
y the National Ocean and Atmospheric Administration (NOAA, SJF
Port Townsend, Washington 1/3-arc second datasets, https://www.

cei.noaa.gov/), 3-arc second bathymetry dataset of British Columbia
https://www.ncei.noaa.gov/) and GEBCO 15-arc second global ocean
nd terrain model (https://www.gebco.net/data_and_products/gridde
_bathymetry_data/). Bathymetry sources were merged with priority
iven to higher resolution and more recent sources, and then spatially

veraged at model resolution before interpolation to model grids.
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3.2.3. Offshore waves
The frequency-directional wave spectrum at the wave model off-

shore boundary is estimated from directional wave buoy observations
at 46087 (Fig. 1). The NDBC buoy is located at the entrance to the SJF.
Although directional spread estimates by the NDBC 3-m discus obser-
vations have been found to contain bias (approximately 6-deg), mean
direction observations are skillful (O’Reilly et al., 1996), and energy
propagation into the SJF is likely modulated at 1st order by offshore
wave direction. The distribution of wave energy across offshore direc-
tions are estimated with observed directional moments (𝑎1, 𝑏1, 𝑎2, 𝑏2,
Longuet-Higgins et al., 1963) and the maximum entropy method (MEM,
Lygre and Krogstad, 1986). While the directional distribution estimated
from directional wave bouy observations is inherently uncertain Ochoa
and Delgado-González (1990), model predictions driven by the MEM
have previously been observed to be skillful (O’Reilly et al., 2016;
Crosby et al., 2016).

3.3. Models

3.3.1. Hydrodynamic model
A depth-averaged hydrodynamic model was developed for the Sal-

ish Sea by Tehranirad et al. (2023) and summarized here. The Delft3D
Flexible Mesh hydrodynamic model (Delft3D FM, Kernkamp et al.,
2011) was developed with a spatial resolution varying from 150
to 1000-m. Surface and pressure forcing was derived from HRPDS
forecasts. Offshore water levels were prescribed with tidal harmon-
ics (Lyard et al., 2017, , FES2014b) and non-tidal water levels de-
rived from HYbrid Coordinate Ocean Model (HYCOM, https://www.
hycom.org/). Because HYCOM predictions do not include the inverse-
barometer-effect, a reference pressure of 1017 mb is used in the model
to capture changing water levels owing to atmospheric pressure adjust-
ments. Fluvial forcing is prescribed for 23 major rivers in the region
with USGS gauge data (Survey, 2016) and Canadian observations of
the Fraser River at Hope, British Columbia (station 08MF005) (Canada,
2019). Modeled water level predictions have average errors of 15 cm.

3.3.2. Linear-shoaling-refraction (LSR)
Shoaling and refraction processes dominate wave propagation when

wind-wave generation and non-linear processes are small (O’Reilly
and Guza, 1993). This is often the case on the U.S. West coast when
long-period remotely generated wave energy propagates in deep water
over the relatively short continental shelf. Several prior studies have
shown that good predictive skill is achieved with simple shoaling
and refraction transformation of wave energy (O’Reilly and Guza,
1991, 1993; Crosby et al., 2016), and these techniques are currently
used operationally by the CDIP to make accurate nearshore wave
predictions (O’Reilly et al., 2016).

By ignoring wind-wave generation and non-linear interactions,
nearshore and offshore wave energy can be related through a simple
linear transformation. Historically this transformation was estimated
by backward ray-tracing (Longuet-Higgins, 1957; Dorrestein, 1960;
Mehaute et al., 1982). More recently transformations derived from
phase-averaged wave modeling were shown to be similar when spatial
resolution was sufficient (Crosby et al., 2018). Here, the phase averaged
wave model, Simulating WAves Nearshore (SWAN, Booij et al., 1999),
s used to relate offshore and nearshore wave energy in the SJF
Fig. 1) by simulating incoming wave energy from the range of possible
irections.

The SWAN model domain covers the portion of the Salish Sea
xposed to remote wave energy propagation through the SJF (Fig. 1,
lue box). The model is run with varying incident wave direction,
rom 180 to 360-degrees at a 2-deg increments, covering the range
f possible incident directions (e.g., Fig. 2). Incoming wave energy,
quivalent to 1-m in wave height, is prescribed at the boundary in a
arrow 2-degree direction bin uniformly distributed across frequency

or each simulation, similar to the approach in Crosby et al. (2018). d

4

Table 2
Model domain (Fig. 1), the domain which it is nested, and its spatial resolution.

Model Domain Nest In Resolution [m]

LSR LSR – 100
LUT L1 – 100

L2 L1 50
NWM/SWM D1 – 1000

D2 D1 200
D3 D1 200
D4 D1 200
D5 D4 50
D6 D3 50

The model is run in stationary mode (ignoring estimated propagation
time-lags of 3–4 h) with 180 direction bins (2-deg resolution) and 48
frequency bins spaced logarithmically from 0.04 Hz to 0.5 Hz and at
a spatial resolution of 100-m (Table 2). Simulations were run with
constant water level equal to mean-sea-level (MSL) and currents were
ignored. Second order numerics (SORDUP) produced significant garden
sprinkler effect (see SWAN technical manual) and therefore first order
(BSBT) propagation numerics were used. Wind-wave generation, white-
capping, and diffraction are all disabled while bottom friction and
breaking constants are set to default values. Convergence criteria was
met for all simulations, requiring that in over 99% of cells the change
in wave heights change were less than 2% or 2 cm between the last
and prior iteration. Computation of all model simulations on a 12-core
desktop (AMD Ryzen 3.8 GHz) at 100-m resolution took less than 1-day.
Throughout this study SWAN version 41.10 or later (41.20 and 41.31)
were used.

Frequency-directional energy spectra are saved at observation sites
and at model grid cells (Fig. 1). Following Crosby et al. (2018), trans-
form coefficients, 𝐾, are estimated from the ratio of nearshore, 𝐸𝑛, and
ffshore energy, 𝐸𝑜 such that at location 𝑖,

[𝑖, 𝑓 , 𝜃𝑜, 𝑔(𝜃𝑛)] =
∫ 𝐸𝑛(𝑖, 𝑓 , 𝜃𝑛)𝑔(𝜃𝑛) 𝑑𝜃𝑛

𝐸𝑜(𝑓, 𝜃𝑜)
,

where 𝑔(𝜃𝑛) = (1, cos 𝜃𝑛, sin 𝜃𝑛, cos 2𝜃𝑛, sin 2𝜃𝑛) . (1)

The function 𝑔(𝜃𝑛) allows for an estimate of total wave energy
nd directional buoy moments 𝑎1, 𝑏1, 𝑎2, 𝑏2, respectively (Longuet-

Higgins et al., 1963). Offshore frequency-directional spectra at the
model boundary, 𝐸𝑏, are estimated from observations at 46087 (Sec-
tion 3.2.3). A simple integration of the offshore spectra and transform
coefficients provides predictions of wave energy, 𝐸, at a time step, 𝑡,
where

𝐸(𝑡, 𝑓 ) = ∫ 𝐾(𝑓, 𝜃𝑜, 1)𝐸𝑏(𝑡, 𝑓 , 𝜃𝑜) 𝑑𝜃𝑜 , (2)

and predictions of directional moments, e.g., 𝑎1, are similarly estimated,

𝑎1(𝑡, 𝑓 ) = ∫ 𝐾(𝑓, 𝜃𝑜, cos 𝜃𝑛)𝐸𝑏(𝑡, 𝑓 , 𝜃𝑜) 𝑑𝜃𝑜 . (3)

redictions are made within the model domain (LSR, Table 3) for the
eriod of available HRDPS meteorological forecasts (Section 3.2.1).

.3.3. Fetch-depth-limited (FDL)
While LSR models wave propagation, other methods are needed for

ind-wave generation. Over decades empirical relations between wind,
aves, fetch, and water depth been developed and is best described by

he non-dimensional variables: non-dimensional energy, 𝜖 = 𝑔2𝐸∕𝑢4,
on-dimensional frequency, 𝜈 = 𝑓𝑝 𝑢∕𝑔, non-dimensional fetch, 𝜒 =
𝑥∕𝑢2, and non-dimensional depth, 𝛿 = 𝑔𝑑∕𝑢2. Here, 𝑔 is the gravita-
ional constant, 𝐸 is the wave energy variance in m2, 𝑢 is the wind
peed, 𝑓𝑝 is the peak wave period, and 𝑥 is fetch. The comprehensive
ONSWAP experiment in the North Sea (Hasselmann et al., 1973) was
he first to use multiple observations sites with varying fetches and

erived empirical relationships for 𝜖 and 𝜈 are found in CERC (1984).

https://www.hycom.org/
https://www.hycom.org/
https://www.hycom.org/
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Fig. 2. Linear Spectral Refraction (LSR) model runs for a selection of incoming wave directions (𝜃𝑜, black text). Wave heights are shown in color. Note that simulations are
omputed from 180 ◦ -360 ◦ at 2 ◦ increments and incoming wave energy is evenly distributed across frequency bands (0.04 – 0.5 Hz).
𝑥

acking similar data is shallow water, Young and Verhagen (1996)
xamined an array of shallow wave observations in Lake George,
ustralia. An array of observations sites in the shallow lake (nearly
onstant 2-m depth) provided additional constraints and relationships
or 𝜖 and 𝜈 where

𝜖 = 3.64 ⋅ 10−3
[

tanh𝐴1 tanh
(

𝐵1
tanh𝐴1

)]1.74
,

𝜈 = 0.133
[

tanh𝐴2 tanh
(

𝐵2
tanh𝐴2

)]−0.37
,

(4)

and

𝐴1 = 0.493 𝛿0.75 ,

𝐵1 = 3.13 ⋅ 10−3𝜒0.57 ,

𝐴2 = 0.331 𝛿1.01 ,

𝐵2 = 5.215 ⋅ 10−4𝜒0.73 .

(5)

These relations are used to estimate significant wave height, 𝐻𝑠, and
peak period, 𝑇𝑝 where

𝐻𝑠 = 4
√

𝑢4𝜖∕𝑔2 , 𝑇𝑝 =
𝑢
𝜈𝑔

. (6)

Fetch, 𝑥, is estimated by tracing rays from a given location until
hey reach land, defined as a water depth less than 1-m (e.g., 3).
ays are traced in spherical coordinates by integrating the geodesic
quations at 100-m steps (Munk et al., 1988) where a 100-m step size
as found to be sufficient to avoid missing small islands and narrow

pits. Rays are traced from the prediction site at a starting angle, 𝜃,
rom 0–360 degrees with 1-deg increments. Tracing yields a function
(𝜃) (e.g., Fig. 3a). For a given wind direction, 𝜃𝑤, the effective fetch,
̂ is

̂ =
∫ 𝑥𝛼(𝜃)𝑊 (𝜃, 𝛽) 𝑑𝜃

(7)

∫ 𝑥𝛼−1(𝜃)𝑊 (𝜃, 𝛽) 𝑑𝜃

5

where

𝑊 (𝜃, 𝛽) =
{

cos2𝛽 (𝜃 − 𝜃𝑤) where − 𝜋∕2 ≥ 𝜃 ≤ 𝜋∕2
0 otherwise (8)

Here, 𝑊 (𝜃, 𝛽) is a weighting function with width determined by 𝛽.
Scaling parameter 𝛼 determines the emphasis of peaks in 𝐹 (𝜃), where
a large alpha weights peaks more heavily than valleys. Small values of
𝛽 result in a wide weighting function that considers a larger range of
fetch values surrounding a given wind direction (e.g., A1). The largest
̂ are therefore derived from large 𝛼 and small 𝛽 values by allowing
for a broad weighting function and weight peaks heavily (Fig. 3b). The
weighting in (7) results in a smoother change in fetch with direction
and tends to ignore small islands that wave energy is likely to refract
or diffract around (O’Reilly and Guza, 1993). Additionally, 𝛼 and 𝛽
allow for tuning based on observations. Optimal values of 𝛽 = 1 and
𝛼 = 1 were selected based on overall agreement with observations (see,
Appendix A.2)

Wind direction, 𝜃𝑤, and speed, 𝑢, from HRDPS forecasts are ex-
tracted at the prediction location. The argument may be made for
extracting wind speed from some upwind direction, but for simplic-
ity only wind conditions at the prediction location are used. Water
depths at each modeled time-step, 𝑑, are derived from numerical
hydrodynamic simulations described in Section 3.3.1.

3.3.4. Look-up-table (LUT)
An alternative to the simple and computationally fast FDL ap-

proach, is the incrementally more sophisticated and computationally
taxing method of creating a look-up-table (LUT) of pre-computed wave
simulations. A LUT is an approach to reducing computation when
forcing conditions can be parameterized into a small number of vari-
ables, and those forcing combinations can be pre-computed over the
range of expected values. When the number of combinations is less

than the time-steps of the simulation computation costs are reduced.
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Fig. 3. (a) Rays (gray) traced from Hein bank (blue asterisk) at 1◦ direction intervals terminating at land determine fetch extent. (b) Fetch (solid black) versus fetch direction.
ffective fetch, �̂�, is shown with varying 𝛼 (colors, see legend) and for 𝛽 = 1 (solid lines) and 𝛽 = 16 (dashed lines). The weighting function, 𝑊 (𝜃), is illustrated in light gray for
= 2 and dark gray for 𝛽 = 16 shading with scaling on the right-hand 𝑦-axis.
Table 3
Model description and prescription of model forcing with a yes/no (Y/N) flag indicating if the model was
forced by offshore waves (Offshore), regional winds (Wind), regional currents (Currents) and a flag to
indicate whether stationary (S) or non-stationary (N) numerics were used in SWAN simulations. Simulated
time periods are denoted with an X.

Model Description Offshore Wind Currents Numerics 2016–2020 Oct-Nov 2019

FDL fetch-depth-limited N Y N – X
LSR linear-shoaling-

refraction
Y N N S X

LUT SWAN look-up-table N Y N S X
SWM stationary SWAN Y Y N S X
SWM+C stationary SWAN

+ current
Y Y Y S X

NWM+C non-stationary SWAN
+ current

Y Y Y N X
t
e
w
t

3

a
p
d
u
b
i
a
r
l
t
t
(
b

𝑓

M
a

Prior wave studies have applied a LUT approach to transform waves
nearshore (Hegermiller et al., 2017) and predict wind-wave generation
in enclosed basins (Elliott and Neill, 2015; Golshani, 2011). For wind-

ave generation, wind conditions are assumed homogeneous across the
odel domain and a range of wind speeds and directions are simulated.

Here, stationary SWAN simulations are computed for a suite of wind
peeds, 0 to 30 m/s in 2.5 m/s increments, wind directions, 0 to 360 ◦

n 20 ◦ increments, and water levels, −2 to 8.5 m+navd88 in 1.5 m
ncrements for a total of 1,728 model runs (e.g., Fig. 4). Two model
omains cover the region, L1 and L2, with directional resolution of
00 m and 50 m, respectively (Tables 2 and 3). Domain L2 is nested
nside of domain L1 along the north-west boundary (Fig. 1). The models
re run in stationary mode with 72 direction bins (5-deg resolution) and
5 frequency bins spaced logarithmically from 0.03 Hz to 2.0 Hz with
efault third generation wave growth and white-capping parameters.
iffraction is disabled and bottom friction and breaking constants are

et to default values. Convergence criteria were set similarly to LSR
imulations (Section 3.3.2). Computation is performed on the USGS
omputer cluster, Yeti (Anon, 2021), requiring 36-days of compute
n a single 20-core node (Intel Ivy Bridge). Several nodes were used
imultaneously allowing for computation to complete in several days.

Wave predictions are generated at given locations with local wa-
er level predictions (Section 3.3.1) and the nearest over-water wind
redictions (Section 3.2.1). At each time-step the LUT of desired wave
arameters (e.g., 𝐻 , 𝑇 , 𝑇 , 𝐷 ) is linearly interpolated (3-dimension)
𝑠 𝑝 𝑚 𝑚 d

6

o the predicted water level, wind speed, and wind direction. Predicted
nergy spectra, 𝐸(𝑓 ), is similarly interpolated at observation locations
here spectral predictions are saved. Predictions are created over the

ime period with available HRDPS forecasts (2016–2020).

.3.5. LSR+FDL and LSR+LUT
Combining the LSR predictions with FDL or LUT predictions offers

computationally rapid approach to capturing both offshore energy
enetration and regional wind-wave generation. These calculations are
one under the following assumptions: (1.) wind-wave generation is
naffected by existing sea state; (2.) nonlinear wave–wave interactions
etween locally generated and remotely generated waves are insignif-
cant; and (3.) that all simplifying assumptions in LSR and LUT are
dditionally valid. Under these assumptions wave energy spectra from
emote- and local-generation is simply additive. In practice, file storage
imitations do not allow for saving frequency-directional spectra at all
ime steps and model locations. However, where only bulk parame-
er predictions are saved wave heights can be added in quadrature
e.g., 𝐻 (3)

𝑠
2
= 𝐻 (1)

𝑠
2
+ 𝐻 (2)

𝑠
2
), and mean frequency, 𝑓𝑚, is determined

y a weighted average,

(3)
𝑚 =

𝐻 (1)
𝑠

2
𝑓 (1)
𝑚 +𝐻 (2)

𝑠
2
𝑓 (2)
𝑚

𝐻 (1)
𝑠

2
+𝐻 (2)

𝑠
2

. (9)

ean wave directions can be similarly estimated by a weighted aver-
ge, but with care taken to use a circular mean; however this was not
one here.
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Fig. 4. Wave heights for several Look-up-table (LUT) model runs for varying wind speeds (columns) and wind directions (rows).
.3.6. Stationary and non-stationary wave model (SWN,SWM+C, NWM)
A more robust, but computationally demanding approach to wave

rediction, is implementation of a phase averaged wave model for
ontinuous simulation. Here, SWAN was coupled to the regional hy-
rodynamic model of water level and currents (Section 3.3.1) with the
elft3D Flexible Mesh Modeling Suite developed by Deltares. SWAN
as configured in both stationary and non-stationary modes as well
s with and without coupling to depth-averaged currents. Spatially
arying winds from HRDPS (Section 3.2.1) provide input to local wind-
ave generation and waves observed at 46087 (Section 3.2.3) provide
ffshore (spectral) forcing.

To allow for feasible computation a large overall SWAN domain was
reated at 1 km spatial resolution with several nested, and sub-nested
omains (Table 2, Fig. 1) at resolutions increasing with a factor 5 to
7

200-m (nested) and 50-m (sub-nested). Nested domains are created at
locations with available observations and much of the larger region was
not resolved beyond the relatively coarse 1-km.

To evaluate differences and model skill three configurations
were simulated, stationary numerics without wave–current interactions
(SWM), stationary numerics with wave–current interactions (SWM+C),
and non-stationary numerics with wave–current interactions (NWM
+C). A time step of 10-min was used in non-stationary simulations,
while outputs and stationary simulations were computed at hourly
intervals. The models are similar to LUT simulations (Section 3.3.4,
however the number of direction bins was reduced to 36 (10-deg
resolution) to lower computational expense. Convergence criteria were
set similarly to LSR simulations (Section 3.3.2) but with a maximum
number of iteration of 50 in the stationary simulations. It was found
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Fig. 5. (a) Non-stationary (NWM+C) mean modeled wave heights from Oct 1 2020 through Nov 30 2020. Mean wave height bias, (b), and root-mean-squared-difference, (c),
between stationary (SWM+C) and non-stationary simulations (SWM+C - NWM+C).
to be necessary in non-stationary simulations to increase the maximum
number of iterations from the default of 1 to 10.

3.4. Simulation time periods

Wave simulations were performed over two time periods (Table 3).
Owing to computational constraints, SWM, SWM+C, and NWN+C sim-
ulations were completed during the comparatively short 2-month pe-
riod from October to November of 2019. Longer 5-year simulation
were computed for SWM+C and all rapid approaches (FDL, LSR, LUT)
from 2016–2020 where both HRDPS wind forcing (Section 3.2.1) and
regional wave observations were available (Table 1).

4. Results and discussion

Overall results suggest that including additional physics in numer-
ical models tends to improve prediction skill, however, this improve-
ment is in some cases marginal and may not be worth the computa-
tional expense. Below, predictions with stationary and non-stationary
numerics are compared, the impact of wave current interactions are
evaluated, and reduced-physics model implementations are compared.

4.1. Non-stationary vs stationary

Stationary and non-stationary simulations should begin to diverge
where the domain is large enough such that the sea state does not
fully develop within the model time step (1-h). Comparisons of SWM+C
and NWM+C significant wave height (𝐻𝑠) predictions from Oct-Nov
2019 show the largest root-mean-squared-differences (RMSD) of 5–
10 cm in the regions with the largest basins, such as the SoG and
SJF and smaller differences (0–5 cm) in smaller basins such as those
within near Seattle (Fig. 5, Fig. 1). These differences appear to be
primarily a result of timing as mean bias between SWM+C and NWM+C
are comparatively small (0–2 cm). On average, SWM+C simulations
produce slightly higher wave heights resulting in a consistent negative
bias across the domain (Fig. 5b).
8

Table 4
Root-mean-square-error (RMSE) and bias at three observation sites (rows) for three
model configurations (rows) for the simulation period Oct-Nov 2019 (Table 3).

Site Hs RMSE [cm] Hs bias [cm]

SWM SWM+C NWM+C SWM SWM+C NWM+C

46257 30 31 29 6.0 6.6 7.6
46146 23 – 18 −3.0 – −2.1
Spot-01 13 13 12 1.1 1.0 1.2

Prediction errors are also examined for both models. Root-mean-
squared-error (RMSE) at three observation sites with data during this
period are lower by 1–5 cm for NWM+C predictions compared to
SWM+C predictions (Table 4). The largest improvement is observed at
46257 and 46146 both located in larger open basins (Fig. 1). Bias at
observations sites is relatively similar for NWM+C and SWM+C, within
1–2 cm, and range from −3 to 8 cm (Table 4). Overall, the error with
observations is larger than the differences between models suggesting
the dominant error terms are not stationary/non-stationary assump-
tions. While accuracy is improved with non-stationary assumptions, the
computational cost of non-stationary simulations were approximately
3x that of stationary simulations.

4.2. Current effects

Over the shorter simulation period (Oct-Nov 2019) stationary simu-
lations (SWM) are compared with and without currents (Table 3). Mean
normalized bias (Appendix A.1), SWM+C - SWM, varies from 10%–
40% with the strongest negative values east and west of Dungeness
Spit where depth averaged mean currents show a clockwise circulation
pattern (Fig. 6a). Mean wave heights are generally 10%–20% higher for
SWM+C predictions in the northern part of domain D2 (Fig. 6). Here,
the region is sheltered from offshore energy in the SJF by the southern
most tip of Vancouver Island. Current refraction is likely increasing the
directional spread in wave conditions allowing for additional energy
penetration into sheltered regions (Ardhuin et al., 2017). Differences

between mean wave heights in domains D3 and D4 are much smaller



S.C. Crosby, C.M. Nederhoff, N. VanArendonk et al. Ocean Modelling 184 (2023) 102231

(
c

a
R
w
d

a
W
n
4
t
i
w

4

b
c
s

Fig. 6. Normalized wave height bias (Nbias, see appendix A.1) between stationary runs with currents (SWM+C) and without (SWM) predictions for domains (a) D2, (b) D3, and
c) D4 (Table 2) for predictions from October to November 2020. Black arrows show mean depth-averaged current velocity with white arrow and text providing scale. Magenta
ircles show locations wave buoys (Table 1).
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s currents at these locations are slower (Fig. 6b,c). Similar patterns of
oot-mean-squared-differences (RMSD) in wave heights are observed
ith differences ranging from 0%–50% in domain D2 and much less in
omains D3 and D4 (Fig. 6).

Prediction errors for SWM and SWM+C at observation sites avail-
ble during the simulation period are surprisingly similar (Table 4).
hile SWM+C errors are slightly larger at 46257 this difference is

ot likely significant. This prediction error similarity is likely because
6257 is at site of strong current shear (Fig. 7). Further study is needed
o quantify both the accuracy of current predictions and the potential
mprovement in prediction accuracy possible by including currents in
ave simulations.

.3. Accuracy at observation locations

Overall predictions during the nearly 5-year simulation period (Ta-
le 3) were skilled, with increasingly complex and computationally
ostly models performing slightly better. Fourteen-day time series at ob-
ervation locations illustrate some differences and deficiencies (Fig. 8).
 m

9

At locations partially sheltered to offshore wave energy (46088, W1,
W2, W3) LSR under-predicted because of the lack of local wind-wave
generation (Fig. 8a,i,m,n). At the relatively exposed location, 46257,
LSR predictions showed better agreement with observations at most
times, but local wind-waves appeared important as well, as indicated
by FDL and LUT predictions (Fig. 8d).

Modeled wave heights at completely sheltered locations, i.e., not
xposed to remote wave energy, were most similar. Predictions in
ellingham and Skagit bays in general show good agreement with
bservations and between models (SWAN+C, LUT, and FDL) with the
xception of locations S1 and S2 where all models were biased low
Fig. 8i,j). Under-predicted wind speeds are suspected as the primary
rive of this bias, however, robust wind observations were not available
t this location to confirm this hypothesis. In larger basins, such as the
oG and inside the SJF, peak wave heights appeared over-predicted by
he LUT approach, but FDL and SWAN+C were similar and more closely
ligned with observations (Fig. 8a,b,c).

Predictions at 46257 were examined more closely as the site is

ost exposed to remotely generated energy, while local generation still
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Table 5
Median RMSE and bias across observations sites for several models (rows) as illustrated
in Fig. 11. Median errors/differences are computed with respect to observations (left)
and SWM+C predictions (right) and additionally for both all wave conditions (Hs ≥ 0
m) and solely for relatively large waves (Hs ≥ 0.5 m). Note that errors at B3 are not
included as SWM+C predictions are not available there.

Threshold Model Error to observations Difference to SWM+C

Hs [m] Tm [s] Hs [m] Tm [s]

RMSE bias RMSE bias RMSD bias RMSD bias

Hs ≥ 0 m
SWM+C 0.17 −0.02 1.2 −0.6 – – – –
FDL 0.22 −0.07 1.5 −0.9 0.14 0.00 0.7 0.1
LSR 0.39 −0.27 5.8 5.5 0.33 −0.25 6.7 6.5
LUT 0.19 −0.03 1.7 −1.1 0.12 0.00 0.8 0.1
LSR + FDL 0.21 −0.05 1.4 −0.3 0.14 0.00 0.9 0.5
LSR + LUT 0.17 −0.01 1.7 −0.7 0.12 0.00 0.8 0.1

Hs ≥ 0.5 m
SWM+C 0.31 −0.11 0.7 −0.1 – – – –
FDL 0.36 −0.27 0.7 −0.2 0.22 −0.11 0.7 0.1
LSR 0.80 −0.74 5.7 5.5 0.68 −0.64 5.5 5.3
LUT 0.31 −0.07 0.9 −0.2 0.18 0.04 0.8 0.3
LSR + FDL 0.34 −0.22 0.8 0.4 0.21 −0.10 0.9 0.8
LSR + LUT 0.29 −0.07 0.9 −0.2 0.18 0.04 0.7 0.3

relatively important. LSR+LUT and LSR+FDL wave height predictions
showed good agreement with SWAN+C despite the simplifications em-
ployed (Fig. 9a). Overall SWM+C predictions appeared slightly higher
during this time period, while LSR+LUT and LSR+FDL appeared more
closely aligned with observations. Mean wave period was also well
predicted by LSR+LUT and LSR+FDL and showed clearly the oscillation
between remotely and locally generated wave conditions (Fig. 9b).
Mean wave direction was also well predicted, though it is clear that NW
energy both from local winds and offshore waves tend to dominate.

Across observation locations SWAN+C and LSR+LUT wave height
predictions showed the best agreement with observations (Fig. 10).
At most locations LSR+FDL predictions had a negative bias, indicated
by quantile–quantile curves (magenta, Fig. 10). At some locations
LSR+LUT wave height distributions appeared closest to observations,
while at others SWM predictions appeared best. At S1 and S2 a clear
negative bias was present for all model configurations, confirming that
the observed biases in Fig. 8 were typical throughout the record.

Wave height root-mean-squared-error (RMSE) varied across loca-
tions but was lowest for SWM+C predictions at most sites (green bars
in Fig. 11a). This was similarly true for mean wave periods (Fig. 11b).
While LSR+LUT wave height errors were lower than LSR+FDL, mean
wave period errors were higher. Larger LSR+LUT RMSE occurred most
strongly at sites 46088, W1, W2, and W3, located just inside the SJF.
This appears driven by larger negative bias in mean wave height pre-
diction (Fig. 11d). Wave height biases varied, but are mostly consistent
between models, suggesting that either models contain a very similar
bias or that model forcing biases are driving these errors (Fig. 11c).
For example, the largest biases were observed at W1–W3 where small
amounts of offshore energy propagation may be difficult to resolve and
highly influence by directional details not resolved well by the direc-
tional coefficients measured by 46087 (Ochoa and Delgado-González,
1990).

Median RMSE from all observations sites (except for B3 where
SWM+C predictions are not available) for SWM+C and LSR+LUT were
similar (17 cm, Table 5). Median RMSE was 21 cm for LSR+FDL and
slightly higher for FDL alone (22 cm). Lowest errors for mean period
were achieved by SWM+C followed by LSR+FDL. With the exception
of LSR, median bias for wave height and mean period were small as
positive bias in some regions tended to cancel out negative biases in
others. Median wave height RMSE in LUT only predictions was rela-
tively low because most observation sites were not exposed to remote
energy. Overall prediction error was low for the combined models,
LSR+FDL and LSR+LUT, and was similar to SWM+C accuracy when

averaged across locations and conditions (17–21 cm wave height RMSE,

10
Table 5). Errors and biases increase when limiting the error analysis
to waves conditions where Hs ≥ 0.5 m, but the comparison between
models stays mainly the same. Surprisingly wave height errors and bias
are slightly lower for LSR+LUT predictions compared to SWM+C, but
SWM+C mean period predictions are still more skilled (Table 5).

Mean observed and predicted energy as a function of frequency
illustrate where offshore energy and local wind generation tend to
dominate observations and predictions (Fig. 12). At 46257, the site
most exposed to offshore wave energy, 10-s energy was the largest con-
tributor and was under-predicted by both SWM+C and LSR (Fig. 12a).
The combined LSR+LUT mean energy predictions agree better with
observations than SWM+C predictions that appeared biased high at
higher frequency and biased slightly lower at lower frequency. While
LSR+LUT appeared best at exposed site 46257, at the mostly shel-
tered 46088 location mean SWM+C predictions agreed better with
observations (Fig. 12b). This is likely due to the LSR predictions under-
estimating remotely generated energy propagation and the neglected
non-linear interactions between remotely and locally generated energy
in LSR+LUT. In contrast, results at W1–W3 were more similar for
SWM+C and LSR+LUT models (Fig. 12c–e). At sheltered sites the
LUT and SWM+C spectral predictions were mostly similar and agree
generally with observations. At 46146, mean SWM+C predictions were
closer to observations while LUT predictions exceed observed values
(Fig. 12f). In larger basin winds are much more likely to be spatially
heterogeneous and LUT assumptions will more often be violated. In
smaller embayments, such as Bellingham Bay, observations and models
agree quite closely with the exception of B3, that is very close to
shore and likely not well resolved by the model spatial resolution
(Fig. 12h–k).

4.4. Model–model differences

In most cases, model–model differences are smaller than model
errors with observations. Root-mean-squared-differences (RMSD) are
estimated between SWM+C, and LSR+FDL and LSR+LUT models at
observation locations and shown in red outlines in Fig. 11a,b. With the
exception of S1–S3, wave height and mean period errors between these
reduced-physics models (LSR+FDL, LSR+LUT) and SWM+C are lower
than errors with the observations themselves. This suggests that either
the models are prone to errors in very similar ways, or that uncertainty
in the model forcing dominates prediction error (e.g., biases in wind
predictions, errors in bathymetry, or poorly resolved directional wave
spectra offshore). Results are similar for model biases, but less consis-
tent, and in some locations model–model bias and mode-observation
is similar. Median RMSD and bias across observation sites are consis-
tent with these findings indicating that model–model differences are
generally lower than model errors to observations (Table 5).

While observation sites are sparsely dispersed across the domain,
model–model comparisons illustrate differences spatially across the
complex region. Owing to data constraints, spatial outputs were com-
pared over the shorter 2-month time period during October and Novem-
ber of 2019. Mean wave heights during this time vary between models,
but are similar for SWM+C and LSR+LUT predictions (Fig. 13a-d).
Mean bias between simplified models and SWM+C shows clearly where
offshore energy (LSR) and locally generated energy (LUT) dominate
(Fig. 13e,f). In the SJF bias between LSR and SWM+C is relatively
small, up to 0%–30% of the mean wave height while root-mean-
squared-differences (RMSD) normalized by mean SWM+C wave heights
(Fig. 13a) are 0%–50% (Fig. 13e,h). In the SoG and protected part of
Puget Sound errors and bias between SWM+C and LUT are small, 10%–
30%. The combined model, LSR+LUT, misfit to SWM+C is relatively
small in most places, with bias and RMSDs just 10%–20% of the mean
wave height. Some exceptions are observed in narrow bays and inlets
where SWM+C spatial resolution was too coarse to resolve wave
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Fig. 7. Normalized root-mean-squared-difference (NRMSD, see appendix A.1) between stationary with currents (SWM+C) and without (SWM) predictions for domains (a) D2, (b)
D3, and (c) D4 (Table 2) for predictions from October to November 2020. Black arrows show mean depth-averaged current velocity with white arrow and text providing scale.
Magenta circles show locations wave buoys (Table 1).
generation (Table 2). It is likely the higher resolution LUT predictions
more correctly represent wave conditions in these locations.

In the lee of Vancouver Island (eastward), just inside the SJF,
LSR+LUT predicted wave height are slightly smaller (10%–30%) than
SWM+C, appearing to diffuse less northward energy into basin. The
north–south gradient caused by the sheltering by Vancouver island
is sharper for LSR+LUT than for SWM+C. While diffraction is not
used in any models, non-linear wave–wave interactions not captured
in LSR+LUT may increase directional spreading breaking down sharp
sheltering gradients. Additionally, model spatial and directional reso-
lutions vary significantly and model numerics may also be responsible
for reducing gradients in comparatively coarser resolutions.

4.5. Trade-offs

Non-stationary SWAN simulations, at the spatial resolution needed
to resolve details of a domain such as the Salish Sea, are currently
impractical for long-term simulations. While the use of unstructured
grids has allowed for some progress (Yang et al., 2019) it is unclear
11
whether sheltering details in the SJF are properly resolved or if such
a method is practical for much longer simulations. The relatively short
(2-month) non-stationary simulations presented here required 9 days
to complete on a 2 Intel® Xeon® Processor E3-1276 v3 nodes (4-
cores each), a computational cost approximately 3x that of comparable
stationary simulations. This 3x increase in required expense reduced
wave height errors by a relatively modest 1–2 cm at 46257 and Spot-1
observation sites (Table 4) and exhibited relatively small root-mean-
squared-differences of 0–10 cm between models across the domain
(Fig. 5c).

While comparatively faster, 5-year stationary simulations (SWM+C)
required 14 days to complete on 12 nodes (4-cores each), for many, this
represents an insignificant computational cost. In addition, traditional
SWAN implementations must be run again to revise predictions if input
forcing is updated or modified. This is not uncommon in climate change
scenario downscaling where new global forcings become available with
each iteration of model development. Typically these simulations are
long (100+ years), and have multiple scenarios, e.g., representative
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Fig. 8. Model-predicted (colors) and observed (black dots) wave heights versus time at varying buoy locations (a–n) for varying model configurations (see legend). Note, LSR
predictions are only made at sites exposed to offshore waves, and SWM+C predictions not available at B3 due to its close proximity to land.
concentration pathways (RCPs). A significant advantage of the rapid

approaches presented here (FDL, LSR, and LUT) is the insignificant

computational cost of producing updated predictions after required

simulations are completed.
12
Though not insignificant, the construction of the LUT suite of sim-
ulations (1,728 in total) required approximately 30 days to complete
on one Intel Ivy Bridge node (20-cores), about 1/2 of the compute
time required by the 5-year stationary model (SWM+C). Albeit, com-
putational expense is not directly comparable between the two due
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Fig. 9. Model-predicted (colors) and observed (black dots) wave heights (a), mean periods (b), and mean direction (c) versus time at buoy 46257 for varying model configurations
(see legend). Note FDL and FDL+LUT mean direction are not shown because the FDL approach does not include a directional component.
to difference in IT-infrastructure. SWAN simulations required by LSR
transformation estimates was comparatively trivial, running overnight
on a 12-core desktop machine. FDL predictions required the most trivial
computational cost as no numerical simulations were needed. For all
of these methods, the initial computation was needed only once. Once
simulations were completed, predictions were rapidly made for any
set of forcing conditions (5-year interpolations can be completed in
minutes).

At observation sites considered here, RMSE of LSR+LUT and LSR
+FDL methods were within 4 cm and 0.5 s of SWM+C errors for
wave height and mean period, respectively. Normalized bias and RMSD
between these reduced-physics models and SWM+C range from 0%–
30% in most of the regions. In terms of absolute error to observations,
the relative gain in accuracy with a traditional SWAN implementation
was found to be considerably small. Differences between models varied
over the region. In modestly sized bays with minimal exposure to
remotely generated waves differences were quite small. While larger
differences were observed in more dynamic regions such as the SJF
(Fig. 7), without additional observations, conclusions about absolute
errors and improvement cannot made.

In addition to computational savings, LSR and LUT approaches
allow for higher spatial resolution than what is practical in traditional
SWAN implementations. While resolution varied from 50–1,000 meters

in nested SWM+C domains, LSR and LUT predictions were made on

13
50-m and 100-m resolution grids across the Puget Sound (L2) and
larger Salish Sea region (L1, LSR, Table 2) with the potential to resolve
nearshore wave conditions more accurately.

Overall these rapid approaches reduce computation cost by 2–4
orders of magnitude while incurring a relatively small loss in accuracy
(Table 5), that may be larger in highly dynamic regions. Implemen-
tation is relatively straightforward, but more complex than traditional
model building. Such rapid frameworks excel most strongly where high
resolution and very long predictions are required.

5. Summary

In the Salish Sea region stationary SWAN assumptions result in only
minor skill degradation (Table 4). SWAN simulations show that while
including currents effects had negligible impact to skill at observation
sites available (Table 4), spatial wave are likely significantly effected
in the SJF near Dungeness Spit (Fig. 6).

Overall, rapid implementations of fetch-limited, look-up-table, and
linear spectral refraction are skill-full in much of the region as com-
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Fig. 10. Quantile–quantile (q–q) plots of observed (x-axis) and model-predicted (y-axis) wave height. Different colors represent different model configurations with lighter colors
depicting observations and darker colors their quantiles. In particular, stationary swan with current (SWM+C), LSR+FDL and LSR+LUT are shown.
pared to traditional SWAN simulations (Table 5). Combinations of
these methods appear to capture both remotely and locally generated
waves well, despite missing non-linear interactions between them. Ad-
ditionally, model–model comparisons show lower root-mean-squared-
differences than compared with observations (Fig. 11) suggesting that
prediction error may be due to uncertainties in model boundary forcing,
e.g., errors in wind predictions, uncertainties in directional details of
offshore waves, and errors in bathymetry.

The rapid approaches presented here may server as a framework
for rapid coastal prediction where local, remote, or both types of wave
energy are prevalent. The methods require orders of magnitude (2–4)
less computation than traditional SWAN implementations and are well
suited to support both rapid near-term forecast systems and long-term,
high-resolution, historical or future simulations needed to evaluate
robust wave statistics alongshore.
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egend). Dark red outlines show root-mean-squared-difference (RMSD) and bias between the outlined model and SWAN+C, illustrating relative magnitude of model–model error to
odel-observation error.
N
c
v
h
H

N

ppendix

.1. Error metrics

The error metrics used throughout are defined here. Mean bias is
efined as,

ias = 1
𝑇

𝑇
∑

𝑖=1
(𝑝𝑖 − 𝑜𝑖) , (10)

where predictions, 𝑝, and observations, 𝑜, are taken from each valid
ime step, 𝑖. Similarly, Root-Mean-Square-Error (RMSE) is estimated by,
15
RMSE =

√

√

√

√
1
𝑇

𝑇
∑

𝑖=1
(𝑝𝑖 − 𝑜𝑖)2 . (11)

ormalized metrics are estimated by dividing by mean values after
omputation rather than determining mean errors from normalized
alues at each time-step. These definitions weight larger values more
eavily, ignoring large relative errors during periods of low energy.
ere, normalized-bias (Nbias) is defined as,

bias = 100 ⋅
1
𝑇
∑𝑇

𝑖=1(𝑝𝑖 − 𝑜𝑖)
1 ∑𝑇

, (12)

𝑇 𝑖=1 𝑜𝑖
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Fig. 12. Mean modeled (colored lines) and observed (black dots) energy versus frequency at observations sites exposed to offshore wave energy in panels (a)–(e). Modeled and
observed energy averaged over time frames where observations are available (Table 1).
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and normalized-root-mean-squared-error (NRMSE) is defined as

NRMSE = 100 ⋅

√

1
𝑇
∑𝑇

𝑖=1(𝑝𝑖 − 𝑜𝑖)2

1
𝑇
∑𝑇

𝑖=1 𝑜𝑖
. (13)

ere, errors are considered as the difference between model and ob-
ervations. Additionally we consider the difference between models,
uch as the bias and normalized-root-mean-squared-difference (RMSD).
hese consider same formula above, but swap 𝑜 with some reference
odel prediction, e.g., 𝑝𝑟𝑒𝑓 . Here the reference model is typically the
ore complex model, where the goal is to determine what is missing,

rror-wise, in the simplified model.
 i

16
.2. Fetch-depth-limited optimization

FDL predictions can be made rapidly, and with two free parameters,
and 𝛽, may be optimized. Here, LSR predictions are added (LSR+FDL)

or locations exposed to remotely generated energy. Wave height RMSE
ary for LSR+FDL predictions over a range of 𝛼 and 𝛽 values (Fig. A1).

Optimal 𝛼 and 𝛽 values minimize wave height RMSE and are indicated
by red circles in Fig. A1 at varying observation location. Optimal
alues were not consistent between observation locations (Table 1).
espite occupying similar large basins without offshore wave exposure,

owest RMSEs at 46146 were observed with small 𝛽 values while 46131
ndicated a larger 𝛽 yielded better skill (Fig. A1b,c). Observations in
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Fig. 13. Mean SWM (a), LSR (b), LUT (c), and LSR+LUT (d) modeled wave heights from Oct 1 2020 through Nov 30 2020. Mean bias with SWM+C predictions for LSR (e), LUT
f), and LSR+LUT (g). Root-mean-squared-difference (RMSD) with SWM+C predictions for LSR (h), LUT (i), and LSR+LUT (j).
ellingham Bay (B1–B3) show similar disagreement for preferred 𝛼 and
values.

The observed lack of agreement of optimal 𝛼 and 𝛽 values, even in
imilar locations, suggest that these parameters are compensating for
ind forcing uncertainties or limitations of the empirical method itself.
17
Additionally, while here wind input is taken at the nearest over-water
prediction location to the prediction location, a more sophisticated
approach would be take a weighted average of up-wind wind condi-
tions, and an optimization of plausible weight parameters may yield
more consistent results. Nonetheless, for simplicity, here errors were
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Fig. A1. 𝐻𝑠 root-mean-squared-error (RMSE) versus 𝛼 and 𝛽 at each observation site (Table 1) and a simple average across all locations except for 46257 due to its high exposure
to remotely generated waves (n). Minimum RMSE is indicated by the filled red circle.
averaged across all sites and an optimal average value of 𝛽 = 1 and
= 1 (Fig. A1o) was therefore used in the following analysis across the

egion.
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